<< Chapter < Page Chapter >> Page >

There are practical limits to galvanometer sensitivity, but it is possible to get analog meters that make measurements accurate to a few percent. Note that the inaccuracy comes from altering the circuit, not from a fault in the meter.

Connections: limits to knowledge

Making a measurement alters the system being measured in a manner that produces uncertainty in the measurement. For macroscopic systems, such as the circuits discussed in this module, the alteration can usually be made negligibly small, but it cannot be eliminated entirely. For submicroscopic systems, such as atoms, nuclei, and smaller particles, measurement alters the system in a manner that cannot be made arbitrarily small. This actually limits knowledge of the system—even limiting what nature can know about itself. We shall see profound implications of this when the Heisenberg uncertainty principle is discussed in the modules on quantum mechanics.

There is another measurement technique based on drawing no current at all and, hence, not altering the circuit at all. These are called null measurements and are the topic of Null Measurements . Digital meters that employ solid-state electronics and null measurements can attain accuracies of one part in 10 6 size 12{"10" rSup { size 8{6} } } {} .

Digital meters are able to detect smaller currents than analog meters employing galvanometers. How does this explain their ability to measure voltage and current more accurately than analog meters?

Since digital meters require less current than analog meters, they alter the circuit less than analog meters. Their resistance as a voltmeter can be far greater than an analog meter, and their resistance as an ammeter can be far less than an analog meter. Consult [link] and [link] and their discussion in the text.

Got questions? Get instant answers now!

Phet explorations: circuit construction kit (dc only), virtual lab

Stimulate a neuron and monitor what happens. Pause, rewind, and move forward in time in order to observe the ions as they move across the neuron membrane.

Circuit Construction Kit (DC Only), Virtual Lab

Section summary

  • Voltmeters measure voltage, and ammeters measure current.
  • A voltmeter is placed in parallel with the voltage source to receive full voltage and must have a large resistance to limit its effect on the circuit.
  • An ammeter is placed in series to get the full current flowing through a branch and must have a small resistance to limit its effect on the circuit.
  • Both can be based on the combination of a resistor and a galvanometer, a device that gives an analog reading of current.
  • Standard voltmeters and ammeters alter the circuit being measured and are thus limited in accuracy.

Conceptual questions

Why should you not connect an ammeter directly across a voltage source as shown in [link] ? (Note that script E in the figure stands for emf.)

A circuit shows a connection of a cell of e m f script E and internal resistance r. Each terminal of the cell is connected to opposite ends of the ammeter. The circuit is closed.
Got questions? Get instant answers now!

Suppose you are using a multimeter (one designed to measure a range of voltages, currents, and resistances) to measure current in a circuit and you inadvertently leave it in a voltmeter mode. What effect will the meter have on the circuit? What would happen if you were measuring voltage but accidentally put the meter in the ammeter mode?

Got questions? Get instant answers now!

Questions & Answers

a15kg powerexerted by the foresafter 3second
Firdos Reply
what is displacement
Xolani Reply
movement in a direction
Explain why magnetic damping might not be effective on an object made of several thin conducting layers separated by insulation? can someone please explain this i need it for my final exam
anas Reply
What is thê principle behind movement of thê taps control
Oluwakayode Reply
what is atomic mass
thomas Reply
this is the mass of an atom of an element in ratio with the mass of carbon-atom
show me how to get the accuracies of the values of the resistors for the two circuits i.e for series and parallel sides
Jesuovie Reply
Explain why it is difficult to have an ideal machine in real life situations.
Isaac Reply
tell me
what's the s . i unit for couple?
its s.i unit is Nm
Force×perpendicular distance N×m=Nm
İt iş diffucult to have idêal machine because of FRİCTİON definitely reduce thê efficiency
if the classica theory of specific heat is valid,what would be the thermal energy of one kmol of copper at the debye temperature (for copper is 340k)
Zaharadeen Reply
can i get all formulas of physics
BPH Reply
what affects fluid
Doreen Reply
Dimension for force MLT-2
Promise Reply
what is the dimensions of Force?
Osueke Reply
how do you calculate the 5% uncertainty of 4cm?
melia Reply
4cm/100×5= 0.2cm
how do you calculate the 5% absolute uncertainty of a 200g mass?
melia Reply
= 200g±(5%)10g
use the 10g as the uncertainty?
which topic u discussing about?
topic of question?
the relationship between the applied force and the deflection
sorry wrong question i meant the 5% uncertainty of 4cm?
its 0.2 cm or 2mm
thank you
Hello group...
well hello there
hi guys
the meaning of phrase in physics
Chovwe Reply
is the meaning of phrase in physics
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?