# 6.3 Centripetal force  (Page 3/10)

 Page 3 / 10
$N\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta =\frac{{\mathrm{mv}}^{2}}{r}\text{.}$

Because the car does not leave the surface of the road, the net vertical force must be zero, meaning that the vertical components of the two external forces must be equal in magnitude and opposite in direction. From the figure, we see that the vertical component of the normal force is $N\phantom{\rule{0.25em}{0ex}}\text{cos}\phantom{\rule{0.25em}{0ex}}\theta$ , and the only other vertical force is the car’s weight. These must be equal in magnitude; thus,

$N\phantom{\rule{0.25em}{0ex}}\text{cos}\phantom{\rule{0.25em}{0ex}}\theta =\text{mg}\text{.}$

Now we can combine the last two equations to eliminate $N$ and get an expression for $\theta$ , as desired. Solving the second equation for $N=\text{mg}/\left(\text{cos}\phantom{\rule{0.25em}{0ex}}\theta \right)$ , and substituting this into the first yields

$\text{mg}\frac{\text{sin}\phantom{\rule{0.25em}{0ex}}\theta }{\text{cos}\phantom{\rule{0.25em}{0ex}}\theta }=\frac{{\text{mv}}^{2}}{r}$
$\begin{array}{rrr}\text{mg}\phantom{\rule{0.25em}{0ex}}\text{tan}\left(\theta \right)& =& \frac{{\mathrm{mv}}^{2}}{r}\\ \text{tan}\phantom{\rule{0.25em}{0ex}}\theta & =& \frac{{v}^{2}}{\text{rg.}}\end{array}$

Taking the inverse tangent gives

$\theta ={\text{tan}}^{-1}\left(\frac{{v}^{2}}{\text{rg}}\right)\phantom{\rule{0.25em}{0ex}}\text{(ideally banked curve, no friction).}$

This expression can be understood by considering how $\theta$ depends on $v$ and $r$ . A large $\theta$ will be obtained for a large $v$ and a small $r$ . That is, roads must be steeply banked for high speeds and sharp curves. Friction helps, because it allows you to take the curve at greater or lower speed than if the curve is frictionless. Note that $\theta$ does not depend on the mass of the vehicle.

## What is the ideal speed to take a steeply banked tight curve?

Curves on some test tracks and race courses, such as the Daytona International Speedway in Florida, are very steeply banked. This banking, with the aid of tire friction and very stable car configurations, allows the curves to be taken at very high speed. To illustrate, calculate the speed at which a 100 m radius curve banked at 65.0° should be driven if the road is frictionless.

Strategy

We first note that all terms in the expression for the ideal angle of a banked curve except for speed are known; thus, we need only rearrange it so that speed appears on the left-hand side and then substitute known quantities.

Solution

Starting with

$\text{tan}\phantom{\rule{0.25em}{0ex}}\theta =\frac{{v}^{2}}{\text{rg}}$

we get

$v=\left(\text{rg}\phantom{\rule{0.25em}{0ex}}\text{tan}\phantom{\rule{0.25em}{0ex}}\theta {\right)}^{1/2}\text{.}$

Noting that tan 65.0º = 2.14, we obtain

$\begin{array}{lll}v& =& {\left[\left(\text{100 m}\right)\left(9.80 m{\text{/s}}^{2}\right)\left(2\text{.}\text{14}\right)\right]}^{1/2}\\ & =& \text{45.8 m/s.}\end{array}$

Discussion

This is just about 165 km/h, consistent with a very steeply banked and rather sharp curve. Tire friction enables a vehicle to take the curve at significantly higher speeds.

Calculations similar to those in the preceding examples can be performed for a host of interesting situations in which centripetal force is involved—a number of these are presented in this chapter’s Problems and Exercises.

## Take-home experiment

Ask a friend or relative to swing a golf club or a tennis racquet. Take appropriate measurements to estimate the centripetal acceleration of the end of the club or racquet. You may choose to do this in slow motion.

## Phet explorations: gravity and orbits

Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!

## Section summary

• Centripetal force ${\text{F}}_{\text{c}}$ is any force causing uniform circular motion. It is a “center-seeking” force that always points toward the center of rotation. It is perpendicular to linear velocity $v$ and has magnitude
$\phantom{\rule{0.25em}{0ex}}{F}_{\text{c}}={\text{ma}}_{\text{c}}\text{,}$

which can also be expressed as

$\left(\begin{array}{c}{F}_{\text{c}}=m\frac{{v}^{2}}{r}\\ \begin{array}{}\text{or}\\ {F}_{\text{c}}=\text{mr}{\omega }^{2}\end{array}\end{array},}$

how lesers can transmit information
griffts bridge derivative
below me
please explain; when a glass rod is rubbed with silk, it becomes positive and the silk becomes negative- yet both attracts dust. does dust have third types of charge that is attracted to both positive and negative
what is a conductor
Timothy
hello
Timothy
below me
why below you
Timothy
no....I said below me ...... nothing below .....ok?
dust particles contains both positive and negative charge particles
Mbutene
corona charge can verify
Stephen
when pressure increases the temperature remain what?
what is frequency
define precision briefly
CT scanners do not detect details smaller than about 0.5 mm. Is this limitation due to the wavelength of x rays? Explain.
hope this helps
what's critical angle
The Critical Angle Derivation So the critical angle is defined as the angle of incidence that provides an angle of refraction of 90-degrees. Make particular note that the critical angle is an angle of incidence value. For the water-air boundary, the critical angle is 48.6-degrees.
okay whatever
Chidalu
pls who can give the definition of relative density?
Temiloluwa
the ratio of the density of a substance to the density of a standard, usually water for a liquid or solid, and air for a gas.
Chidalu
What is momentum
mass ×velocity
Chidalu
it is the product of mass ×velocity of an object
Chidalu
how do I highlight a sentence]p? I select the sentence but get options like copy or web search but no highlight. tks. src
then you can edit your work anyway you want
Wat is the relationship between Instataneous velocity
Instantaneous velocity is defined as the rate of change of position for a time interval which is almost equal to zero
Astronomy
The potential in a region between x= 0 and x = 6.00 m lis V= a+ bx, where a = 10.0 V and b = -7.00 V/m. Determine (a) the potential atx=0, 3.00 m, and 6.00 m and (b) the magnitude and direction of the electric ficld at x =0, 3.00 m, and 6.00 m.
what is energy
hi all?
GIDEON
hey
Bitrus
energy is when you finally get up of your lazy azz and do some real work 😁
what is physics
what are the basic of physics
faith
base itself is physics
Vishlawath
tree physical properties of heat
tree is a type of organism that grows very tall and have a wood trunk and branches with leaves... how is that related to heat? what did you smoke man?
algum profe sabe .. Progressivo ou Retrógrado e Acelerado ou Retardado   V= +23 m/s        V= +5 m/s        0__>              0__> __________________________>        T= 0               T=6s
Claudia