<< Chapter < Page Chapter >> Page >

Solution

For this problem, note that v 2 = 0 size 12{v rSub { size 8{2} } =0} {} and use conservation of momentum. Thus,

p 1 = p 1 + p 2 size 12{p rSub { size 8{1} } =p' rSub { size 8{1} } +p' rSub { size 8{2} } } {}

or

m 1 v 1 = m 1 v 1 + m 2 v 2 . size 12{m rSub { size 8{1} } v rSub { size 8{1} } =m rSub { size 8{1} } { {v}} sup { ' } rSub { size 8{1} } +m rSub { size 8{2} } { {v}} sup { ' } rSub { size 8{2} } } {}

Using conservation of internal kinetic energy and that v 2 = 0 size 12{v rSub { size 8{2} } =0} {} ,

1 2 m 1 v 1 2 = 1 2 m 1 v 1 2 + 1 2 m 2 v 2 2 . size 12{ { {1} over {2} } m rSub { size 8{1} } v rSub { size 8{1} rSup { size 8{2} } } = { {1} over {2} } m rSub { size 8{1} } v"" lSub { size 8{1} } ' rSup { size 8{2} } + { {1} over {2} } m rSub { size 8{2} } v rSub { size 8{2} } ' rSup { size 8{2} } } {}

Solving the first equation (momentum equation) for v 2 size 12{ { {v}} sup { ' } rSub { size 8{2} } } {} , we obtain

v 2 = m 1 m 2 v 1 v 1 . size 12{ { {v}} sup { ' } rSub { size 8{2} } = { {m rSub { size 8{1} } } over {m rSub { size 8{2} } } } left (v rSub { size 8{1} } - { {v}} sup { ' } rSub { size 8{1} } right )} {}

Substituting this expression into the second equation (internal kinetic energy equation) eliminates the variable v 2 size 12{ { {v}} sup { ' } rSub { size 8{2} } } {} , leaving only v 1 size 12{ { {v}} sup { ' } rSub { size 8{1} } } {} as an unknown (the algebra is left as an exercise for the reader). There are two solutions to any quadratic equation; in this example, they are

v 1 = 4 . 00 m/s size 12{ { {v}} sup { ' } rSub { size 8{1} } =4 "." "00"`"m/s"} {}

and

v 1 = 3 . 00 m/s . size 12{ { {v}} sup { ' } rSub { size 8{1} } = - 3 "." "00"" m/s"} {}

As noted when quadratic equations were encountered in earlier chapters, both solutions may or may not be meaningful. In this case, the first solution is the same as the initial condition. The first solution thus represents the situation before the collision and is discarded. The second solution ( v 1 = 3 . 00 m/s ) size 12{ \( { {v}} sup { ' } rSub { size 8{1} } = - 3 "." "00"`"m/s" \) } {} is negative, meaning that the first object bounces backward. When this negative value of v 1 size 12{ { {v}} sup { ' } rSub { size 8{1} } } {} is used to find the velocity of the second object after the collision, we get

v 2 = m 1 m 2 v 1 v 1 = 0 . 500 kg 3 . 50 kg 4 . 00 3 . 00 m/s size 12{ { {v}} sup { ' } rSub { size 8{2} } = { {m rSub { size 8{1} } } over {m rSub { size 8{2} } } } left (v rSub { size 8{1} } - { {v}} sup { ' } rSub { size 8{1} } right )= { {0 "." "500"`"kg"} over {3 "." "50"`"kg"} } left [4 "." "00" - left ( - 3 "." "00" right ) right ]`"m/s"} {}

or

v 2 = 1 . 00 m/s . size 12{ { {v}} sup { ' } rSub { size 8{2} } =1 "." "00"`"m/s"} {}

Discussion

The result of this example is intuitively reasonable. A small object strikes a larger one at rest and bounces backward. The larger one is knocked forward, but with a low speed. (This is like a compact car bouncing backward off a full-size SUV that is initially at rest.) As a check, try calculating the internal kinetic energy before and after the collision. You will see that the internal kinetic energy is unchanged at 4.00 J. Also check the total momentum before and after the collision; you will find it, too, is unchanged.

The equations for conservation of momentum and internal kinetic energy as written above can be used to describe any one-dimensional elastic collision of two objects. These equations can be extended to more objects if needed.

Making connections: take-home investigation—ice cubes and elastic collision

Find a few ice cubes which are about the same size and a smooth kitchen tabletop or a table with a glass top. Place the ice cubes on the surface several centimeters away from each other. Flick one ice cube toward a stationary ice cube and observe the path and velocities of the ice cubes after the collision. Try to avoid edge-on collisions and collisions with rotating ice cubes. Have you created approximately elastic collisions? Explain the speeds and directions of the ice cubes using momentum.

Phet explorations: collision lab

Investigate collisions on an air hockey table. Set up your own experiments: vary the number of discs, masses and initial conditions. Is momentum conserved? Is kinetic energy conserved? Vary the elasticity and see what happens.

Collision Lab

Section summary

  • An elastic collision is one that conserves internal kinetic energy.
  • Conservation of kinetic energy and momentum together allow the final velocities to be calculated in terms of initial velocities and masses in one dimensional two-body collisions.

Conceptual questions

What is an elastic collision?

Problems&Exercises

Two identical objects (such as billiard balls) have a one-dimensional collision in which one is initially motionless. After the collision, the moving object is stationary and the other moves with the same speed as the other originally had. Show that both momentum and kinetic energy are conserved.

Professional Application

Two manned satellites approach one another at a relative speed of 0.250 m/s, intending to dock. The first has a mass of 4 . 00 × 10 3 kg size 12{4 "." "00" times "10" rSup { size 8{3} } " kg"} {} , and the second a mass of 7 . 50 × 10 3 kg size 12{7 "." "50" times "10" rSup { size 8{3} } " kg"} {} . If the two satellites collide elastically rather than dock, what is their final relative velocity?

0.250 m/s

A 70.0-kg ice hockey goalie, originally at rest, catches a 0.150-kg hockey puck slapped at him at a velocity of 35.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities be in this case?

Questions & Answers

Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
hi
Loga
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
(a) Find the recoil velocity of a 70.0-kg ice hockey goalie, originally at rest, who catches a 0.150-kg hockey puck slapped at him at a velocity of 35.0 m/s. (b) How much kinetic energy is lost during the collision? Assume friction between the ice and the puck-goalie system is negligible. (Figure 8.9)
Kamal Reply
Calculate the velocities of two objects following an elastic collision, given that m1 = 0.500 kg, m2 = 3.50 kg, v1 = 4.00 m/s, and v2 = 0.
Kamal Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Unit 6 - momentum. OpenStax CNX. Jan 22, 2016 Download for free at https://legacy.cnx.org/content/col11961/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Unit 6 - momentum' conversation and receive update notifications?

Ask