# 5.5 Complex fractions

 Page 1 / 1
This module is from Fundamentals of Mathematics by Denny Burzynski and Wade Ellis, Jr. This module discusses complex fractions. By the end of the module students should be able to distinguish between simple and complex fractions and convert a complex fraction to a simple fraction.

## Section overview

• Simple Fractions and Complex Fractions
• Converting Complex Fractions to Simple Fractions

## Simple fraction

A simple fraction is any fraction in which the numerator is any whole number and the denominator is any nonzero whole number. Some examples are the following:

$\frac{1}{2}\phantom{\rule{6px}{0ex}},\phantom{\rule{6px}{0ex}}\frac{4}{3}\phantom{\rule{6px}{0ex}},\phantom{\rule{6px}{0ex}}\frac{\text{763}}{1,\text{000}}$

## Complex fraction

A complex fraction is any fraction in which the numerator and/or the denomina­tor is a fraction; it is a fraction of fractions. Some examples of complex fractions are the following:

$\frac{\frac{3}{4}}{\frac{5}{6}}\phantom{\rule{6px}{0ex}},\phantom{\rule{6px}{0ex}}\frac{\frac{1}{3}}{2}\phantom{\rule{6px}{0ex}},\phantom{\rule{6px}{0ex}}\frac{6}{\frac{9}{\text{10}}}\phantom{\rule{6px}{0ex}},\phantom{\rule{6px}{0ex}}\frac{4+\frac{3}{8}}{7-\frac{5}{6}}$

## Converting complex fractions to simple fractions

The goal here is to convert a complex fraction to a simple fraction. We can do so by employing the methods of adding, subtracting, multiplying, and dividing fractions. Recall from [link] that a fraction bar serves as a grouping symbol separating the fractional quantity into two individual groups. We proceed in simplifying a complex fraction to a simple fraction by simplifying the numerator and the denom­inator of the complex fraction separately. We will simplify the numerator and denominator completely before removing the fraction bar by dividing. This tech­nique is illustrated in problems 3, 4, 5, and 6 of [link] .

## Sample set a

Convert each of the following complex fractions to a simple fraction.

$\frac{\frac{3}{8}}{\frac{\text{15}}{\text{16}}}$

Convert this complex fraction to a simple fraction by performing the indicated division.

$\begin{array}{cccc}\hfill \frac{\frac{3}{8}}{\frac{\text{15}}{\text{16}}}& =& \frac{3}{8}÷\frac{\text{15}}{\text{16}}\hfill & \text{The divisor is}\frac{\text{15}}{\text{16}}.\text{Invert}\frac{\text{15}}{\text{16}}\text{and multiply.}\hfill \\ & =& \frac{\stackrel{1}{\overline{)3}}}{\underset{1}{\overline{)8}}}\cdot \frac{\stackrel{2}{\overline{)16}}}{\underset{5}{\overline{)15}}}=\frac{1\cdot 2}{1\cdot 5}=\frac{2}{5}\hfill & \end{array}$

$\begin{array}{cc}\frac{\frac{4}{9}}{6}\hfill & \text{Write 6 as}\frac{6}{1}\text{and divide.}\hfill \end{array}$

$\begin{array}{ccc}\hfill \frac{\frac{4}{9}}{\frac{6}{1}}& =& \frac{4}{9}÷\frac{6}{1}\hfill \\ & =& \frac{\stackrel{2}{\overline{)4}}}{9}\cdot \frac{1}{\underset{3}{\overline{)6}}}=\frac{2\cdot 1}{9\cdot 3}=\frac{2}{\text{27}}\hfill \end{array}$

$\begin{array}{cc}\frac{5+\frac{3}{4}}{\text{46}}\hfill & \text{Simplify the numerator.}\hfill \end{array}$

$\begin{array}{cc}\frac{\frac{4\cdot 5+3}{4}}{\text{46}}=\frac{\frac{\text{20}+3}{4}}{\text{46}}=\frac{\frac{\text{23}}{4}}{\text{46}}\hfill & \text{Write 46 as}\frac{\text{46}}{1}.\hfill \end{array}$

$\begin{array}{ccc}\hfill \frac{\frac{\text{23}}{4}}{\frac{\text{46}}{1}}& =& \frac{\text{23}}{4}÷\frac{\text{46}}{1}\hfill \\ & =& \frac{\stackrel{1}{\overline{)23}}}{4}\cdot \frac{1}{\underset{2}{\overline{)46}}}=\frac{1\cdot 1}{4\cdot 2}=\frac{1}{8}\hfill \end{array}$

$\frac{\frac{1}{4}+\frac{3}{8}}{\frac{1}{2}+\frac{\text{13}}{\text{24}}}=\frac{\frac{2}{8}+\frac{3}{8}}{\frac{\text{12}}{\text{24}}+\frac{\text{13}}{\text{24}}}=\frac{\frac{2+3}{8}}{\frac{\text{12}+\text{13}}{\text{24}}}=\frac{\frac{5}{8}}{\frac{\text{25}}{\text{24}}}=\frac{5}{8}÷\frac{\text{25}}{\text{24}}$

$\frac{5}{8}÷\frac{\text{25}}{\text{24}}=\frac{\stackrel{1}{\overline{)5}}}{\underset{1}{\overline{)8}}}\cdot \frac{\stackrel{3}{\overline{)24}}}{\underset{5}{\overline{)25}}}=\frac{1\cdot 3}{1\cdot 5}=\frac{3}{5}$

$\begin{array}{ccc}\hfill \frac{4+\frac{5}{6}}{7-\frac{1}{3}}=\frac{\frac{4\cdot 6+5}{6}}{\frac{7\cdot 3-1}{3}}=\frac{\frac{\text{29}}{6}}{\frac{\text{20}}{3}}& =& \frac{\text{29}}{6}÷\frac{\text{20}}{3}\hfill \\ & =& \frac{\text{29}}{\underset{2}{\overline{)6}}}\cdot \frac{\stackrel{1}{\overline{)3}}}{\text{20}}=\frac{\text{29}}{\text{40}}\hfill \end{array}$

$\frac{\text{11}+\frac{3}{\text{10}}}{4\frac{4}{5}}=\frac{\frac{\text{11}\cdot \text{10}+3}{\text{10}}}{\frac{4\cdot 5+4}{5}}=\frac{\frac{\text{110}+3}{\text{10}}}{\frac{\text{20}+4}{5}}=\frac{\frac{\text{113}}{\text{10}}}{\frac{\text{24}}{5}}=\frac{\text{113}}{\text{10}}÷\frac{\text{24}}{5}$

$\frac{\text{113}}{\text{10}}÷\frac{\text{24}}{5}=\frac{\text{113}}{\underset{2}{\overline{)10}}}\cdot \frac{\stackrel{1}{\overline{)5}}}{\text{24}}=\frac{\text{113}\cdot 1}{2\cdot \text{24}}=\frac{\text{113}}{\text{48}}=2\frac{\text{17}}{\text{48}}$

## Practice set a

Convert each of the following complex fractions to a simple fraction.

$\frac{\frac{4}{9}}{\frac{8}{\text{15}}}$

$\frac{5}{6}$

$\frac{\frac{7}{\text{10}}}{\text{28}}$

$\frac{1}{\text{40}}$

$\frac{5+\frac{2}{5}}{3+\frac{3}{5}}$

$\frac{3}{2}$

$\frac{\frac{1}{8}+\frac{7}{8}}{6-\frac{3}{\text{10}}}$

$\frac{\text{10}}{\text{57}}$

$\frac{\frac{1}{6}+\frac{5}{8}}{\frac{5}{9}-\frac{1}{4}}$

$2\frac{\text{13}}{\text{22}}$

$\frac{\text{16}-\text{10}\frac{2}{3}}{\text{11}\frac{5}{6}-7\frac{7}{6}}$

$1\frac{5}{\text{11}}$

## Exercises

Simplify each fraction.

$\frac{\frac{3}{5}}{\frac{9}{\text{15}}}$

1

$\frac{\frac{1}{3}}{\frac{1}{9}}$

$\frac{\frac{1}{4}}{\frac{5}{\text{12}}}$

$\frac{3}{5}$

$\frac{\frac{8}{9}}{\frac{4}{\text{15}}}$

$\frac{6+\frac{1}{4}}{\text{11}+\frac{1}{4}}$

$\frac{5}{9}$

$\frac{2+\frac{1}{2}}{7+\frac{1}{2}}$

$\frac{5+\frac{1}{3}}{2+\frac{2}{\text{15}}}$

$\frac{5}{2}$

$\frac{9+\frac{1}{2}}{1+\frac{8}{\text{11}}}$

$\frac{4+\frac{\text{10}}{\text{13}}}{\frac{\text{12}}{\text{39}}}$

$\frac{\text{31}}{2}$

$\frac{\frac{1}{3}+\frac{2}{7}}{\frac{\text{26}}{\text{21}}}$

$\frac{\frac{5}{6}-\frac{1}{4}}{\frac{1}{\text{12}}}$

7

$\frac{\frac{3}{\text{10}}+\frac{4}{\text{12}}}{\frac{\text{19}}{\text{90}}}$

$\frac{\frac{9}{\text{16}}+\frac{7}{3}}{\frac{\text{139}}{\text{48}}}$

1

$\frac{\frac{1}{\text{288}}}{\frac{8}{9}-\frac{3}{\text{16}}}$

$\frac{\frac{27}{\text{429}}}{\frac{5}{11}-\frac{1}{\text{13}}}$

$\frac{1}{6}$

$\frac{\frac{1}{3}+\frac{2}{5}}{\frac{3}{5}+\frac{\text{17}}{\text{45}}}$

$\frac{\frac{9}{\text{70}}+\frac{5}{\text{42}}}{\frac{\text{13}}{\text{30}}-\frac{1}{\text{21}}}$

$\frac{\text{52}}{\text{81}}$

$\frac{\frac{1}{\text{16}}+\frac{1}{\text{14}}}{\frac{2}{3}-\frac{\text{13}}{\text{60}}}$

$\frac{\frac{3}{\text{20}}+\frac{\text{11}}{\text{12}}}{\frac{\text{19}}{7}-1\frac{\text{11}}{\text{35}}}$

$\frac{\text{16}}{\text{21}}$

$\frac{2\frac{2}{3}-1\frac{1}{2}}{\frac{1}{4}+1\frac{1}{\text{16}}}$

$\frac{3\frac{1}{5}+3\frac{1}{3}}{\frac{6}{5}-\frac{\text{15}}{\text{63}}}$

$\frac{\text{686}}{\text{101}}$

$\frac{\frac{1\frac{1}{2}+\text{15}}{5\frac{1}{4}-3\frac{5}{\text{12}}}}{\frac{8\frac{1}{3}-4\frac{1}{2}}{\text{11}\frac{2}{3}-5\frac{\text{11}}{\text{12}}}}$

$\frac{\frac{5\frac{3}{4}+3\frac{1}{5}}{2\frac{1}{5}+\text{15}\frac{7}{\text{10}}}}{\frac{9\frac{1}{2}-4\frac{1}{6}}{\frac{1}{8}+2\frac{1}{\text{120}}}}$

$\frac{1}{3}$

## Exercises for review

( [link] ) Find the prime factorization of 882.

( [link] ) Convert $\frac{\text{62}}{7}$ to a mixed number.

$8\frac{6}{7}$

( [link] ) Reduce $\frac{\text{114}}{\text{342}}$ to lowest terms.

( [link] ) Find the value of $6\frac{3}{8}-4\frac{5}{6}$ .

$1\frac{\text{13}}{\text{24}}$ or $\frac{\text{37}}{\text{24}}$

( [link] ) Arrange from smallest to largest: $\frac{1}{2}$ , $\frac{3}{5}$ , $\frac{4}{7}$ .

what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Preparation and Applications of Nanomaterial for Drug Delivery
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
7hours 36 min - 4hours 50 min By Mike Wolf By JavaChamp Team By JavaChamp Team By Mariah Hauptman By Richley Crapo By OpenStax By Stephen Voron By Lakeima Roberts By OpenStax By Royalle Moore