<< Chapter < Page Chapter >> Page >

Section exercises

Verbal

Explain the basis for the cofunction identities and when they apply.

The cofunction identities apply to complementary angles. Viewing the two acute angles of a right triangle, if one of those angles measures x , the second angle measures π 2 x . Then sin x = cos ( π 2 x ) . The same holds for the other cofunction identities. The key is that the angles are complementary.

Got questions? Get instant answers now!

Is there only one way to evaluate cos ( 5 π 4 ) ? Explain how to set up the solution in two different ways, and then compute to make sure they give the same answer.

Got questions? Get instant answers now!

Explain to someone who has forgotten the even-odd properties of sinusoidal functions how the addition and subtraction formulas can determine this characteristic for f ( x ) = sin ( x ) and g ( x ) = cos ( x ) . (Hint: 0 x = x )

sin ( x ) = sin x , so sin x is odd. cos ( x ) = cos ( 0 x ) = cos x , so cos x is even.

Got questions? Get instant answers now!

Algebraic

For the following exercises, find the exact value.

sin ( 11 π 12 )

6 2 4

Got questions? Get instant answers now!

tan ( 19 π 12 )

2 3

Got questions? Get instant answers now!

For the following exercises, rewrite in terms of sin x and cos x .

sin ( x 3 π 4 )

2 2 sin x 2 2 cos x

Got questions? Get instant answers now!

cos ( x + 2 π 3 )

1 2 cos x 3 2 sin x

Got questions? Get instant answers now!

For the following exercises, simplify the given expression.

sec ( π 2 θ )

csc θ

Got questions? Get instant answers now!

tan ( π 2 x )

cot x

Got questions? Get instant answers now!

sin ( 2 x ) cos ( 5 x ) sin ( 5 x ) cos ( 2 x )

Got questions? Get instant answers now!

tan ( 3 2 x ) tan ( 7 5 x ) 1 + tan ( 3 2 x ) tan ( 7 5 x )

tan ( x 10 )

Got questions? Get instant answers now!

For the following exercises, find the requested information.

Given that sin a = 2 3 and cos b = 1 4 , with a and b both in the interval [ π 2 , π ) , find sin ( a + b ) and cos ( a b ) .

Got questions? Get instant answers now!

Given that sin a = 4 5 , and cos b = 1 3 , with a and b both in the interval [ 0 , π 2 ) , find sin ( a b ) and cos ( a + b ) .

sin ( a b ) = ( 4 5 ) ( 1 3 ) ( 3 5 ) ( 2 2 3 ) = 4 6 2 15 cos ( a + b ) = ( 3 5 ) ( 1 3 ) ( 4 5 ) ( 2 2 3 ) = 3 8 2 15

Got questions? Get instant answers now!

For the following exercises, find the exact value of each expression.

sin ( cos 1 ( 0 ) cos 1 ( 1 2 ) )

Got questions? Get instant answers now!

cos ( cos 1 ( 2 2 ) + sin 1 ( 3 2 ) )

2 6 4

Got questions? Get instant answers now!

tan ( sin 1 ( 1 2 ) cos 1 ( 1 2 ) )

Got questions? Get instant answers now!

Graphical

For the following exercises, simplify the expression, and then graph both expressions as functions to verify the graphs are identical. Confirm your answer using a graphing calculator.

cos ( π 2 x )

sin x

Graph of y=sin(x) from -2pi to 2pi.
Got questions? Get instant answers now!

tan ( π 3 + x )

cot ( π 6 x )

Graph of y=cot(pi/6 - x) from -2pi to pi - in comparison to the usual y=cot(x) graph, this one is reflected across the x-axis and shifted by pi/6.
Got questions? Get instant answers now!

tan ( π 4 x )

cot ( π 4 + x )

Graph of y=cot(pi/4 + x) - in comparison to the usual y=cot(x) graph, this one is shifted by pi/4.
Got questions? Get instant answers now!

sin ( π 4 + x )

sin x 2 + cos x 2

Graph of y = sin(x) / rad2 + cos(x) / rad2 - it looks like the sin curve shifted by pi/4.
Got questions? Get instant answers now!

For the following exercises, use a graph to determine whether the functions are the same or different. If they are the same, show why. If they are different, replace the second function with one that is identical to the first. (Hint: think 2 x = x + x . )

f ( x ) = sin ( 4 x ) sin ( 3 x ) cos x , g ( x ) = sin x cos ( 3 x )

They are the same.

Got questions? Get instant answers now!

f ( x ) = cos ( 4 x ) + sin x sin ( 3 x ) , g ( x ) = cos x cos ( 3 x )

Got questions? Get instant answers now!

f ( x ) = sin ( 3 x ) cos ( 6 x ) , g ( x ) = sin ( 3 x ) cos ( 6 x )

They are the different, try g ( x ) = sin ( 9 x ) cos ( 3 x ) sin ( 6 x ) .

Got questions? Get instant answers now!

f ( x ) = sin ( 4 x ) , g ( x ) = sin ( 5 x ) cos x cos ( 5 x ) sin x

Got questions? Get instant answers now!

f ( x ) = sin ( 2 x ) , g ( x ) = 2 sin x cos x

They are the same.

Got questions? Get instant answers now!

f ( θ ) = cos ( 2 θ ) , g ( θ ) = cos 2 θ sin 2 θ

Got questions? Get instant answers now!

f ( θ ) = tan ( 2 θ ) , g ( θ ) = tan θ 1 + tan 2 θ

They are the different, try g ( θ ) = 2 tan θ 1 tan 2 θ .

Got questions? Get instant answers now!

f ( x ) = sin ( 3 x ) sin x , g ( x ) = sin 2 ( 2 x ) cos 2 x cos 2 ( 2 x ) sin 2 x

Got questions? Get instant answers now!

f ( x ) = tan ( x ) , g ( x ) = tan x tan ( 2 x ) 1 tan x tan ( 2 x )

They are different, try g ( x ) = tan x tan ( 2 x ) 1 + tan x tan ( 2 x ) .

Got questions? Get instant answers now!

Technology

For the following exercises, find the exact value algebraically, and then confirm the answer with a calculator to the fourth decimal point.

sin ( 195° )

3 1 2 2 , or  0.2588

Got questions? Get instant answers now!

cos ( 345° )

1 + 3 2 2 , or 0.9659

Got questions? Get instant answers now!

Extensions

For the following exercises, prove the identities provided.

tan ( x + π 4 ) = tan x + 1 1 tan x

tan ( x + π 4 ) = tan x + tan ( π 4 ) 1 tan x tan ( π 4 ) = tan x + 1 1 tan x ( 1 ) = tan x + 1 1 tan x

Got questions? Get instant answers now!

tan ( a + b ) tan ( a b ) = sin a cos a + sin b cos b sin a cos a sin b cos b

Got questions? Get instant answers now!

cos ( a + b ) cos a cos b = 1 tan a tan b

cos ( a + b ) cos a cos b = cos a cos b cos a cos b sin a sin b cos a cos b = 1 tan a tan b

Got questions? Get instant answers now!

cos ( x + y ) cos ( x y ) = cos 2 x sin 2 y

Got questions? Get instant answers now!

cos ( x + h ) cos x h = cos x cos h 1 h sin x sin h h

cos ( x + h ) cos x h = cos x cosh sin x sinh cos x h = cos x ( cosh 1 ) sin x sinh h = cos x cos h 1 h sin x sin h h

Got questions? Get instant answers now!

For the following exercises, prove or disprove the statements.

tan ( u + v ) = tan u + tan v 1 tan u tan v

Got questions? Get instant answers now!

tan ( u v ) = tan u tan v 1 + tan u tan v

True

Got questions? Get instant answers now!

tan ( x + y ) 1 + tan x tan x = tan x + tan y 1 tan 2 x tan 2 y

Got questions? Get instant answers now!

If α , β , and γ are angles in the same triangle, then prove or disprove sin ( α + β ) = sin γ .

True. Note that sin ( α + β ) = sin ( π γ ) and expand the right hand side.

Got questions? Get instant answers now!

If α , β , and y are angles in the same triangle, then prove or disprove tan α + tan β + tan γ = tan α tan β tan γ

Got questions? Get instant answers now!

Questions & Answers

find to nearest one decimal place of centimeter the length of an arc of circle of radius length 12.5cm and subtending of centeral angle 1.6rad
Martina Reply
factoring polynomial
Noven Reply
what's your topic about?
Shin Reply
find general solution of the Tanx=-1/root3,secx=2/root3
Nani Reply
find general solution of the following equation
Nani
the value of 2 sin square 60 Cos 60
Sanjay Reply
0.75
Lynne
0.75
Inkoom
when can I use sin, cos tan in a giving question
duru Reply
depending on the question
Nicholas
I am a carpenter and I have to cut and assemble a conventional roof line for a new home. The dimensions are: width 30'6" length 40'6". I want a 6 and 12 pitch. The roof is a full hip construction. Give me the L,W and height of rafters for the hip, hip jacks also the length of common jacks.
John
I want to learn the calculations
Koru Reply
where can I get indices
Kojo Reply
I need matrices
Nasasira
hi
Raihany
Hi
Solomon
need help
Raihany
maybe provide us videos
Nasasira
about complex fraction
Raihany
Hello
Cromwell
a
Amie
What do you mean by a
Cromwell
nothing. I accidentally press it
Amie
you guys know any app with matrices?
Khay
Ok
Cromwell
Solve the x? x=18+(24-3)=72
Leizel Reply
x-39=72 x=111
Suraj
Solve the formula for the indicated variable P=b+4a+2c, for b
Deadra Reply
Need help with this question please
Deadra
b=-4ac-2c+P
Denisse
b=p-4a-2c
Suddhen
b= p - 4a - 2c
Snr
p=2(2a+C)+b
Suraj
b=p-2(2a+c)
Tapiwa
P=4a+b+2C
COLEMAN
b=P-4a-2c
COLEMAN
like Deadra, show me the step by step order of operation to alive for b
John
A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
Kaitlyn Reply
The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Eseka
Please prove it
Eseka
hi
Joel
yah
immy

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask