# 0.18 The vapnik-chervonenkis inequality

 Page 1 / 1

## The vapnik-chervonenkis inequality

The VC inequality is a powerful generalization of the bounds we obtained for the hyperplane classifier in the previous lecture . The basic idea of the proof is quite similar. Before starting the inequality, we need to introduce theconcept of shatter coefficients and VC dimension.

## Shatter coefficients

Let $\mathcal{A}$ be a collection of subsets of ${\mathcal{R}}^{d}$ , definition: The ${n}^{th}$ shatter coefficient of $\mathcal{A}$ is defined by

${\mathcal{S}}_{\mathcal{A}}\left(n\right)=\begin{array}{c}max\\ {x}_{1},...,{x}_{n}\phantom{\rule{0.166667em}{0ex}}ϵ\phantom{\rule{0.166667em}{0ex}}{\mathcal{R}}^{d}\end{array}\left|\left\{,\left\{{x}_{1},...,{x}_{n}\right\},\bigcap ,A,,,A,\phantom{\rule{0.166667em}{0ex}},ϵ,\phantom{\rule{0.166667em}{0ex}},\mathcal{A},\right\}\right|.$

The shatter coefficients are a measure of the richness of the collection $\mathcal{A}$ . ${\mathcal{S}}_{\mathcal{A}}\left(n\right)$ is the largest number of different subsets of a set of $n$ points that can be generated by intersecting the set with elements of $\mathcal{A}$ .

In 1-d, Let $\mathcal{A}=\left\{\left(-,\infty ,,,t\right],t\phantom{\rule{0.166667em}{0ex}}ϵ\phantom{\rule{0.166667em}{0ex}}\mathcal{R}\right\}$ Possible subsets of $\left\{{x}_{1},...,{x}_{n}\right\}$ generated by intersecting with sets of the form $\left(-,\infty ,,,t\right]$ are $\left\{{x}_{1},...,{x}_{n}\right\},\phantom{\rule{0.166667em}{0ex}}\left\{{x}_{1},\phantom{\rule{0.166667em}{0ex}}...,{x}_{n-1}\right\},\phantom{\rule{0.166667em}{0ex}}...,\phantom{\rule{0.166667em}{0ex}}\left\{{x}_{1}\right\},\phantom{\rule{0.166667em}{0ex}}\phi$ . Hence ${\mathcal{S}}_{d}\left(n\right)=n+1$ .

In 2-d, Let $\mathcal{A}$ = $\left\{$ all rectangles in ${\mathcal{R}}^{2}$ $\right\}$

Consider a set $\left\{{x}_{1},\phantom{\rule{0.166667em}{0ex}}{x}_{2},\phantom{\rule{0.166667em}{0ex}}{x}_{3},\phantom{\rule{0.166667em}{0ex}}{x}_{4}\right\}$ of training points. If we arrange the four points into the corner of a diamond shape. It's easyto see that we can find a rectangle in ${\mathcal{R}}^{2}$ to cover any subsets of the four points as the above picture, i.e. ${\mathcal{S}}_{\mathcal{A}}\left(4\right)={2}^{4}=16$ .

Clearly, ${\mathcal{S}}_{\mathcal{A}}\left(n\right)={2}^{n},n=1,\phantom{\rule{0.166667em}{0ex}}2,\phantom{\rule{0.166667em}{0ex}}3$ as well.

However, for $n=5,{\mathcal{S}}_{\mathcal{A}}\left(n\right)<{2}^{5}$ . This is because we can always select four points such that the rectangle, which just contains fourof them, contains the other point. Consequently, we cannot find a rectangle classifier which contains the four outer points and does not contain the innerpoint as shown above.

Note the ${\mathcal{S}}_{\mathcal{A}}\le {2}^{n}$ .

If $\left|\left\{,\left\{{x}_{1},...,{x}_{n}\right\},\bigcap ,A,,,A,\phantom{\rule{0.166667em}{0ex}},ϵ,\phantom{\rule{0.166667em}{0ex}},\mathcal{A},\right\}\right|={2}^{n}$ then we say that $\mathcal{A}$ shatters ${x}_{1},\phantom{\rule{0.166667em}{0ex}}...,\phantom{\rule{0.166667em}{0ex}}{x}_{n}$ .

## Vc dimension

The VC dimension
${V}_{\mathcal{A}}$ of a collection of sets $\mathcal{A}$ is defined as the largest interger $n$ such that ${S}_{\mathcal{A}}\left(n\right)={2}^{n}$ .

## Sauer's lemma:

Let $\mathcal{A}$ be a collection of set with VC dimension ${V}_{\mathcal{A}}<\infty$ . Then $\forall n,{\mathcal{S}}_{\mathcal{A}}\left(n\right)\le {\sum }_{i=0}^{{V}_{\mathcal{A}}}\left(\begin{array}{c}n\\ i\end{array}\right)$ , also ${\mathcal{S}}_{\mathcal{A}}\left(n\right)\le {\left(n+1\right)}^{{V}_{\mathcal{A}}},\forall n$ .

## Vc dimension and classifiers

Let $\mathcal{F}$ be a collection of classifiers of the form $f:{\mathcal{R}}^{d}\to \left\{0,1\right\}$ Define $\mathcal{A}=\left\{\left\{x:f\left(x\right)=1\right\}×\left\{0\right\}\bigcup \left\{x:f\left(x\right)=0\right\}×\left\{1\right\},f\phantom{\rule{0.166667em}{0ex}}ϵ\phantom{\rule{0.166667em}{0ex}}\mathcal{F}\right\}$ In words, this is collection of subsets of $\mathcal{X}×\mathcal{Y}$ for which on $fϵ\mathcal{F}$ maps the features $x$ to a label opposite of $y$ .  The size of $\mathcal{A}$ expresses the richness of $\mathcal{F}$ .  The larger $\mathcal{A}$ is the more likely it is that there exists an $fϵ\mathcal{F}$ for which $R\left(f\right)=P\left(f\left(X\right)\ne Y\right)$ is close to the Bayes risk ${R}^{*}=P\left({f}^{*}\left(X\right)\ne Y\right)$ where ${f}^{*}$ is the Bayes classifier. The ${n}^{th}$ shatter coefficient of $\mathcal{F}$ is defined as ${\mathcal{S}}_{\mathcal{F}}\left(n\right)={\mathcal{S}}_{\mathcal{A}}\left(n\right)$ and the VC dimesion of $\mathcal{F}$ is defined as ${V}_{\mathcal{F}}={V}_{\mathcal{A}}$ .

linear (hyperplane) classifiers in ${\mathcal{R}}^{d}$

Consider $d$ = 2. Let $n$ be the number of training points, it is easy to see that when $n=1$ , let $\mathcal{A}$ be as above. By using linear classifiers in ${\mathcal{R}}^{2}$ , it is easy to see that we can assign 1 to all possible subsets $\left\{\left\{{x}_{1}\right\},\phi \right\}$ and 0 to their complements. Hence ${\mathcal{S}}_{\mathcal{F}}\left(1\right)=2$ .

When $n=2$ , we can also assign 1 to all possible subsets $\left\{\left\{{x}_{1},{x}_{2}\right\},\phantom{\rule{0.166667em}{0ex}}\left\{{x}_{1}\right\},\phantom{\rule{0.166667em}{0ex}}\left\{{x}_{2}\right\},\phantom{\rule{0.166667em}{0ex}}\phi \right\}$ and 0 to their complements, and vice versa. Hence ${\mathcal{S}}_{\mathcal{F}}\left(2\right)=4={2}^{2}$ .

When $n=3$ , we can arrange arrange the point ${x}_{1},\phantom{\rule{0.166667em}{0ex}}{x}_{2},\phantom{\rule{0.166667em}{0ex}}{x}_{3}$ (non-colinear) so that the set of linear classifiers shatters the three points, hence ${\mathcal{S}}_{\mathcal{F}}\left(3\right)=8={2}^{3}$

When $n=4$ , no matter where the points ${x}_{1},\phantom{\rule{0.166667em}{0ex}}{x}_{2},\phantom{\rule{0.166667em}{0ex}}{x}_{3},\phantom{\rule{0.166667em}{0ex}}{x}_{4}$ and what designated binary values ${y}_{1},\phantom{\rule{0.166667em}{0ex}}{y}_{2},\phantom{\rule{0.166667em}{0ex}}{y}_{3},\phantom{\rule{0.166667em}{0ex}}{y}_{4}$ are. It's clear that $\mathcal{A}$ does not shatter the four points. To see the claim, first observe that the four points will form a 4-gon (if the four points are co-linear, or if the three points are co-linear then clearly linear classifiers cannot shatter the points). The two points that belong to the same diagonal lines form 2 groups and no linear classifier can assign different values to the 2 groups. Hence ${\mathcal{S}}_{\mathcal{F}}\left(4\right)<16={2}^{4}$ and ${V}_{\mathcal{F}}=3$ .

We state here without proving it that in general the class of linear classifiers in ${\mathcal{R}}^{d}$ has ${V}_{\mathcal{F}}=d+1$ .

## The vc inequality

Let ${X}_{1},\phantom{\rule{0.166667em}{0ex}},...,\phantom{\rule{0.166667em}{0ex}}{X}_{n}$ be i.i.d. ${\mathcal{R}}^{d}$ -valued random variables. Denote the common distribution of ${X}_{i},1\le i\le n$ by $\mu \left(A\right)=P\left({X}_{1}\phantom{\rule{0.166667em}{0ex}}ϵ\phantom{\rule{0.166667em}{0ex}}A\right)$ for any subset $A\subset {\mathcal{R}}^{d}$ . Similarly, define the empirical distribution ${\mu }_{n}\left(A\right)=\frac{1}{n}{\sum }_{1}^{n}{1}_{\left\{{X}_{i}ϵA\right\}}$ .

Theorem

## Vc '71

For any probablilty measure $\mu$ and collection of subsets $\mathcal{A}$ , and for any $ϵ>0$ .

$P\left(\begin{array}{c}sup\\ Aϵ\mathcal{A}\end{array},\left|{\mu }_{n},\left(A\right),-,\mu ,\left(A\right)\right|,>,ϵ\right)\le 8{\mathcal{S}}_{\mathcal{A}}\left(n\right){e}^{-n{ϵ}^{2}/32}$

and

$E\left[\begin{array}{c}sup\\ Aϵ\mathcal{A}\end{array},\left|{\mu }_{n},\left(A\right),-,\mu ,\left(A\right)\right|\right]\le 2\sqrt{\frac{log2{\mathcal{S}}_{\mathcal{A}}\left(n\right)}{n}}$

Before giving a proof to the theorem. We present a Corollary.

Corollary

Let $\mathcal{F}$ be a collection of classifiers of the form $f:{\mathcal{R}}^{d}\to \left\{0,1\right\}$ with VC dimension ${V}_{\mathcal{F}}<\infty$ ,  Let $R\left(f\right)=P\left(f\left(X\right)\ne Y\right)$ and ${\stackrel{^}{R}}_{n}\left(f\right)=\frac{1}{n}{\sum }_{1}^{n}{1}_{\left\{f\left({X}_{i}\right)\ne {Y}_{i}\right\}}$ , where ${X}_{i},{Y}_{i},1\le i\le n$ are i.i.d. with joint distribution ${P}_{XY}$ .

Define

${\stackrel{^}{f}}_{n}=\begin{array}{c}argmin\\ fϵ\mathcal{F}\end{array}{\stackrel{^}{R}}_{n}\left(f\right)$ .

Then

$E\left[R\left({\stackrel{^}{f}}_{n}\right)\right]-\begin{array}{c}inf\\ fϵ\mathcal{F}\end{array}R\left(f\right)\le 4\sqrt{\frac{{\mathcal{V}}_{\mathcal{F}}log\left(n,+,1\right)+log2}{n}}.$

Let $\mathcal{A}=\left\{\left\{x:f\left(x\right)=1\right\}×\left\{0\right\}\bigcup \left\{x:f\left(x\right)=0\right\}×\left\{1\right\},f\phantom{\rule{0.166667em}{0ex}}ϵ\phantom{\rule{0.166667em}{0ex}}\mathcal{F}\right\}$

Note that

$P\left(f\left(X\right)\ne Y\right)=P\left(\left(X,Y\right)\phantom{\rule{0.166667em}{0ex}}ϵ\phantom{\rule{0.166667em}{0ex}}A\right):=\mu \left(A\right)$

where $A=\left\{x:f\left(x\right)=1\right\}×\left\{0\right\}\bigcup \left\{x:f\left(x\right)=0\right\}×\left\{1\right\}$ .

Similarly,

$\frac{1}{n}\sum _{1}^{n}{1}_{\left\{f\left({X}_{i}\right)\phantom{\rule{0.166667em}{0ex}}\ne \phantom{\rule{0.166667em}{0ex}}{Y}_{i}\right\}}=\frac{1}{n}\sum _{1}^{n}{1}_{\left\{\left({X}_{i},{Y}_{i}\right)\phantom{\rule{0.166667em}{0ex}}ϵ\phantom{\rule{0.166667em}{0ex}}A\right\}}:=\mu \left(A\right).$

Therefore, according to the VC theorem.

$\begin{array}{ccc}\hfill E\left[\begin{array}{c}sup\\ f\phantom{\rule{0.166667em}{0ex}}ϵ\phantom{\rule{0.166667em}{0ex}}\mathcal{F}\end{array},\left|{\stackrel{^}{R}}_{n},\left(f\right),-,R,\left(f\right)\right|\right]=E\left[\begin{array}{c}sup\\ A\phantom{\rule{0.166667em}{0ex}}ϵ\phantom{\rule{0.166667em}{0ex}}\mathcal{A}\end{array},\left|{\mu }_{n},\left(A\right),-,\mu ,\left(A\right)\right|\right]& \le & 2\sqrt{\frac{log2{\mathcal{S}}_{\mathcal{A}}\left(n\right)}{n}}\hfill \\ & =& 2\sqrt{\frac{log2{\mathcal{S}}_{\mathcal{F}}\left(n\right)}{n}}\hfill \end{array}$

Since ${V}_{\mathcal{F}}<\infty ,{\mathcal{S}}_{\mathcal{F}}\left(n\right)\le {\left(n+1\right)}^{{V}_{\mathcal{F}}}$ and

$E\left[\begin{array}{c}sup\\ fϵ\mathcal{F}\end{array},\left|{\stackrel{^}{R}}_{n},\left(f\right),-,R,\left(f\right)\right|\right]\le 2\sqrt{\frac{{V}_{\mathcal{F}}log\left(n+1\right)+log2}{n}}.$

Next, note that

$\begin{array}{ccc}\hfill R\left({\stackrel{^}{f}}_{n}\right)-\begin{array}{c}inf\\ f\phantom{\rule{0.166667em}{0ex}}ϵ\phantom{\rule{0.166667em}{0ex}}\mathcal{F}\end{array}R\left(f\right)& =& \left[R,\left({\stackrel{^}{f}}_{n}\right),-,{\stackrel{^}{R}}_{n},\left({\stackrel{^}{f}}_{n}\right)\right]+\left[{\stackrel{^}{R}}_{n},\left({\stackrel{^}{f}}_{n}\right),-,\begin{array}{c}inf\\ f\phantom{\rule{0.166667em}{0ex}}ϵ\phantom{\rule{0.166667em}{0ex}}\mathcal{F}\end{array},R,\left(f\right)\right]\hfill \\ & =& \left[R,\left({\stackrel{^}{f}}_{n}\right),-,{\stackrel{^}{R}}_{n},\left({\stackrel{^}{f}}_{n}\right)\right]+\left[\begin{array}{c}sup\\ f\phantom{\rule{0.166667em}{0ex}}ϵ\phantom{\rule{0.166667em}{0ex}}\mathcal{F}\end{array},\left({\stackrel{^}{R}}_{n},\left({\stackrel{^}{f}}_{n}\right),-,R,\left(f\right)\right)\right]\hfill \\ & \le & \left[R,\left({\stackrel{^}{f}}_{n}\right),-,{\stackrel{^}{R}}_{n},\left({\stackrel{^}{f}}_{n}\right)\right]+\left[\begin{array}{c}sup\\ f\phantom{\rule{0.166667em}{0ex}}ϵ\phantom{\rule{0.166667em}{0ex}}\mathcal{F}\end{array},\left({\stackrel{^}{R}}_{n},\left(f\right),-,R,\left(f\right)\right)\right]\hfill \\ & \le & 2\begin{array}{c}sup\\ f\phantom{\rule{0.166667em}{0ex}}ϵ\phantom{\rule{0.166667em}{0ex}}\mathcal{F}\end{array}\left|{\stackrel{^}{R}}_{n},\left(f\right),-,R,\left(f\right)\right|\hfill \end{array}.$

Therefore,

$\begin{array}{ccc}\hfill E\left[R,\left({\stackrel{^}{f}}_{n}\right)\right]-\begin{array}{c}inf\\ f\phantom{\rule{0.166667em}{0ex}}ϵ\phantom{\rule{0.166667em}{0ex}}\mathcal{F}\end{array}R\left(f\right)& \le & 2E\left[\begin{array}{c}sup\\ f\phantom{\rule{0.166667em}{0ex}}ϵ\phantom{\rule{0.166667em}{0ex}}\mathcal{F}\end{array},\left|{\stackrel{^}{R}}_{n},\left(f\right),-,R,\left(f\right)\right|\right]\hfill \\ & \le & 4\sqrt{\frac{{V}_{\mathcal{F}}log\left(n+1\right)+log2}{n}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\hfill \end{array}.$

#### Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

### Read also:

#### Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Statistical learning theory. OpenStax CNX. Apr 10, 2009 Download for free at http://cnx.org/content/col10532/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Statistical learning theory' conversation and receive update notifications? By      By Nick Swain  By Mariah Hauptman By Gerr Zen