<< Chapter < Page Chapter >> Page >
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. Factoring is an essential skill for success in algebra and higher level mathematics courses. Therefore, we have taken great care in developing the student's understanding of the factorization process. The technique is consistently illustrated by displaying an empty set of parentheses and describing the thought process used to discover the terms that are to be placed inside the parentheses.The factoring scheme for special products is presented with both verbal and symbolic descriptions, since not all students can interpret symbolic descriptions alone. Two techniques, the standard "trial and error" method, and the "collect and discard" method (a method similar to the "ac" method), are presented for factoring trinomials with leading coefficients different from 1. Objectives of this module: understand more clearly the factorization process, be able to determine the greatest common factor of two or more terms.

Overview

  • Factoring Method
  • Greatest Common Factor

Factoring method

In the last two types of problems (Sections [link] and [link] ), we knew one of the factors and were able to determine the other factor through division. Suppose, now, we’re given the product without any factors. Our problem is to find the factors, if possible. This procedure and the previous two procedures are based on the distributive property.

An equation showing the product of a and the sum of b and c equal to ab plus ac. The product on the left are identified as factors and the expression on the right of the equal sign is identified as the product.

We will use the distributive property in reverse.

a b + a c product = a ( b + c ) factors

We notice that in the product, a is common to both terms. (In fact, a is a common factor of both terms.) Since a is common to both terms, we will factor it out and write

a ( )

Now we need to determine what to place inside the parentheses. This is the procedure of the previous section. Divide each term of the product by the known factor a .

a b a = b and a c a = c

Thus, b and c are the required terms of the other factor. Hence,

a b + a c = a ( b + c )

When factoring a monomial from a polynomial, we seek out factors that are not only common to each term of the polynomial, but factors that have these properties:

  1. The numerical coefficients are the largest common numerical coefficients.
  2. The variables possess the largest exponents common to all the variables.

Greatest common factor

A monomial factor that meets the above two requirements is called the greatest common factor of the polynomial.

Sample set a

Factor 3 x 18.

The greatest common factor is 3.

3 x 18 = 3 x 3 6 Factor out 3. 3 x 18 = 3 ( ) Divide each term of the product by 3. 3 x 3 = x and 18 3 = 6 ( Try to perform this division mentally . ) 3 x 18 = 3 ( x 6 )

Got questions? Get instant answers now!

Factor 9 x 3 + 18 x 2 + 27 x .

Notice that 9 x is the greatest common factor.

9 x 3 + 18 x 2 + 27 x = 9 x x 2 + 9 x 2 x + 9 x 3. Factor out 9 x . 9 x 3 + 18 x 2 + 27 x = 9 x ( ) Mentally divide 9 x into each term of the product . 9 x 3 + 18 x 2 + 27 x = 9 x ( x 2 + 2 x + 3 )

Got questions? Get instant answers now!

Factor 10 x 2 y 3 20 x y 4 35 y 5 .

Notice that 5 y 3 is the greatest common factor. Factor out 5 y 3 .

10 x 2 y 3 20 x y 4 35 y 5 = 5 y 3 ( )

Mentally divide 5 y 3 into each term of the product and place the resulting quotients inside the ( ) .

10 x 2 y 3 20 x y 4 35 y 5 = 5 y 3 ( 2 x 2 4 x y 7 y 2 )

Got questions? Get instant answers now!

Factor 12 x 5 + 8 x 3 4 x 2 .

We see that the greatest common factor is 4 x 2 .

12 x 5 + 8 x 3 4 x 2 = 4 x 2 ( )

Mentally dividing 4 x 2 into each term of the product, we get

12 x 5 + 8 x 3 4 x 2 = 4 x 2 ( 3 x 3 2 x + 1 )

Got questions? Get instant answers now!

Practice set a

Factor 4 x 48.

4 ( x 12 )

Got questions? Get instant answers now!

Factor 6 y 3 + 24 y 2 + 36 y .

6 y ( y 2 + 4 y + 6 )

Got questions? Get instant answers now!

Factor 10 a 5 b 4 14 a 4 b 5 8 b 6 .

2 b 4 ( 5 a 5 7 a 4 b 4 b 2 )

Got questions? Get instant answers now!

Factor 14 m 4 + 28 m 2 7 m .

7 m ( 2 m 3 4 m + 1 )

Got questions? Get instant answers now!

Consider this problem: factor A x + A y . Surely, A x + A y = A ( x + y ) . We know from the very beginning of our study of algebra that letters represent single quantities. We also know that a quantity occurring within a set of parentheses is to be considered as a single quantity. Suppose that the letter A is representing the quantity ( a + b ) . Then we have

A x + A y = A ( x + y )

( a + b ) x + ( a + b ) y = ( a + b ) ( x + y )

When we observe the expression

( a + b ) x + ( a + b ) y

we notice that ( a + b ) is common to both terms. Since it is common, we factor it out.

( a + b ) ( )

As usual, we determine what to place inside the parentheses by dividing each term of the product by ( a + b ) .

( a + b ) x ( a + b ) = x and ( a + b ) y ( a + b ) = y

Thus, we get

( a + b ) x + ( a + b ) y = ( a + b ) ( x + y )

This is a forerunner of the factoring that will be done in Section 5.4.

Sample set b

Factor ( x 7 ) a + ( x 7 ) b .

Notice that ( x 7 ) is the greatest common factor. Factor out ( x 7 ) .

( x 7 ) a + ( x 7 ) b = ( x 7 ) ( ) Then , ( x 7 ) a ( x 7 ) = a and ( x 7 ) b ( x 7 ) = b . ( x 7 ) a + ( x 7 ) b = ( x 7 ) ( a + b )

Got questions? Get instant answers now!

Factor 3 x 2 ( x + 1 ) 5 x ( x + 1 ) .

Notice that x and ( x + 1 ) are common to both terms. Factor them out. We’ll perform this factorization by letting A = x ( x + 1 ) . Then we have

3 x A 5 A = A ( 3 x 5 ) But A = x ( x + 1 ) , so 3 x 2 ( x + 1 ) 5 x ( x + 1 ) = x ( x + 1 ) ( 3 x 5 )

Got questions? Get instant answers now!

Practice set b

Factor ( y + 4 ) a + ( y + 4 ) b .

( y + 4 ) ( a + b )

Got questions? Get instant answers now!

Factor 8 m 3 ( n 4 ) 6 m 2 ( n 4 ) .

2 m 2 ( n 4 ) ( 4 m 3 )

Got questions? Get instant answers now!

Exercises

For the following problems, factor the polynomials.

4 x 6

2 ( 2 x 3 )

Got questions? Get instant answers now!

21 y 28

7 ( 3 y 4 )

Got questions? Get instant answers now!

12 x 2 + 18 x

6 x ( 2 x + 3 )

Got questions? Get instant answers now!

8 y 2 + 18

2 ( 4 y 2 + 9 )

Got questions? Get instant answers now!

3 y 2 6

3 ( y 2 2 )

Got questions? Get instant answers now!

6 y 2 6 y

6 y ( y 1 )

Got questions? Get instant answers now!

5 a 2 x 2 + 10 x

5 x ( a 2 x + 2 )

Got questions? Get instant answers now!

10 x 2 + 5 x 15

5 ( 2 x 2 + x 3 )

Got questions? Get instant answers now!

15 y 3 24 y + 9

3 ( 5 y 3 8 y + 3 )

Got questions? Get instant answers now!

b y 3 + b y 2 + b y + b

b ( y 3 + y 2 + y + 1 )

Got questions? Get instant answers now!

9 x 2 + 6 x y + 4 x

x ( 9 x + 6 y + 4 )

Got questions? Get instant answers now!

30 a 2 b 2 + 40 a 2 b 2 + 50 a 2 b 2

Got questions? Get instant answers now!

13 x 2 y 5 c 26 x 2 y 5 c 39 x 2 y 5

13 x 2 y 5 ( c 3 )

Got questions? Get instant answers now!

4 x 2 12 x 8

Got questions? Get instant answers now!

6 y 3 8 y 2 14 y + 10

2 ( 3 y 3 + 4 y 2 + 7 y 5 )

Got questions? Get instant answers now!

A x A y

A ( x y )

Got questions? Get instant answers now!

( x + 4 ) b + ( x + 4 ) c

Got questions? Get instant answers now!

( x 9 ) a + ( x 9 ) b

( x 9 ) ( a + b )

Got questions? Get instant answers now!

( 2 x + 7 ) a + ( 2 x + 7 ) b

Got questions? Get instant answers now!

( 9 a b ) w ( 9 a b ) x

( 9 a b ) ( w x )

Got questions? Get instant answers now!

( 5 v ) X + ( 5 v ) Y

Got questions? Get instant answers now!

3 x 5 y 4 12 x 3 y 4 + 27 x 5 y 3 6 x 2 y 6

3 x 2 y 3 ( x 3 y 4 x y + 9 x 3 2 y 3 )

Got questions? Get instant answers now!

8 a 3 b 15 + 24 a 2 b 14 + 48 a 3 b 6 20 a 3 b 7 + 80 a 4 b 6 4 a 3 b 7 + 4 a 2 b

Got questions? Get instant answers now!

8 x 3 y 2 3 x 3 y 2 + 16 x 4 y 3 + 2 x 2 y

x 2 y ( 11 x y 16 x 2 y 2 2 )

Got questions? Get instant answers now!

Exercises for review

( [link] ) A quantity plus 21 % more of that quantity is 26.25. What is the original quantity?

Got questions? Get instant answers now!

( [link] ) Solve the equation 6 ( t 1 ) = 4 ( 5 s ) if s = 2.

t = 3

Got questions? Get instant answers now!

( [link] ) Given that 4 a 3 is a factor of 8 a 3 12 a 2 , find the other factor.

Got questions? Get instant answers now!

Questions & Answers

it is the relatively stable flow of income
Chidubem Reply
what is circular flow of income
Divine Reply
branches of macroeconomics
SHEDRACK Reply
what is Flexible exchang rate?
poudel Reply
is gdp a reliable measurement of wealth
Atega Reply
introduction to econometrics
Husseini Reply
Hi
mostafa
hi
LEMLEM
hello
Sammol
hi
Mahesh
bi
Ruqayat
hi
Ruqayat
Hi fellas
Nyawa
hey
Sammol
hi
God
hello
Jahara
Good morning
Jorge
hi
abubakar
hi
Nmesoma
hi
Mahesh
Hi
Tom
Why is unemployment rate never zero at full employment?
Priyanka Reply
bcoz of existence of frictional unemployment in our economy.
Umashankar
what is flexible exchang rate?
poudel
due to existence of the pple with disabilities
Abdulraufu
the demand of a good rises, causing the demand for another good to fall
Rushawn Reply
is it possible to leave every good at the same level
Joseph
I don't think so. because check it, if the demand for chicken increases, people will no longer consume fish like they used to causing a fall in the demand for fish
Anuolu
is not really possible to let the value of a goods to be same at the same time.....
Salome
Suppose the inflation rate is 6%, does it mean that all the goods you purchase will cost 6% more than previous year? Provide with reasoning.
Geetha Reply
Not necessarily. To measure the inflation rate economists normally use an averaged price index of a basket of certain goods. So if you purchase goods included in the basket, you will notice that you pay 6% more, otherwise not necessarily.
Waeth
discus major problems of macroeconomics
Alii Reply
what is the problem of macroeconomics
Yoal
Economic growth Stable prices and low unemployment
Ephraim
explain inflationcause and itis degre
Miresa Reply
what is inflation
Getu
increase in general price levels
WEETO
Good day How do I calculate this question: C= 100+5yd G= 2000 T= 2000 I(planned)=200. Suppose the actual output is 3000. What is the level of planned expenditures at this level of output?
Chisomo Reply
how to calculate actual output?
Chisomo
how to calculate the equilibrium income
Beshir
Criteria for determining money supply
Thapase Reply
who we can define macroeconomics in one line
Muhammad
Aggregate demand
Mohammed
C=k100 +9y and i=k50.calculate the equilibrium level of output
Mercy Reply
Hi
Isiaka
Hi
Geli
hy
Man
👋
Bahunda
hy how are you?
Man
ys
Amisha
how are you guys
Sekou
f9 guys
Amisha
how are you guys
Sekou
ys am also fine
Amisha
fine and you guys
Geli
from Nepal
Amisha
nawalparasi district from belatari
Amisha
nd u
Amisha
I am Camara from Guinea west Africa... happy to meet you guys here
Sekou
ma management ho
Amisha
ahile becheclor ho
Amisha
hjr ktm bta ho ani k kaam grnu hunxa tw
Amisha
belatari
Amisha
1st year ho
Amisha
nd u
Amisha
ahh
Amisha
kaha biratnagar
Amisha
ys
Amisha
kina k vo
Amisha
money as unit of account means what?
Kalombe
A unit of account is something that can be used to value goods and services and make calculations
Jim
all of you please speak in English I can't understand you're language
Muhammad
I want to know how can we define macroeconomics in one line
Muhammad
it must be .9 or 0.9 no Mpc is greater than 1 Y=100+.9Y+50 Y-.9Y=150 0.1Y/0.1=150/0.1 Y=1500
Kalombe
Mercy is it clear?😋
Kalombe
hi can someone help me on this question If a negative shocks shifts the IS curve to the left, what type of policy do you suggest so as to stabilize the level of output? discuss your answer using appropriate graph.
Galge Reply
if interest rate is increased this will will reduce the level of income shifting the curve to the left ◀️
Kalombe
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary algebra. OpenStax CNX. May 08, 2009 Download for free at http://cnx.org/content/col10614/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask