<< Chapter < Page Chapter >> Page >

Earthquakes generally occur along breaks in the rock mass known as faults , and most occur in regions near plate boundaries. Some 80 percent of all earthquakes occur near convergent plate boundaries, triggered by the interaction of the plates. Earthquakes are also often associated with volcanic activity due to the movement of sub-surface magma. When an earthquake occurs under the ocean, it can trigger a destructive tidal wave known as a tsunami .

Rocks and the rock cycle

The earth's crust is composed of many kinds of rocks, each of which is made up of one or more minerals. Rocks can be classified into three basic groups: igneous, sedimentary, and metamorphic. Igneous rocks are the most common rock type found in the earth's crust. They form when magma cools and crystallizes subsurface (intrusive igneous rocks) or lava cools and crystallizes on the surface (extrusive igneous rocks). Granite is an example of an intrusive igneous rock, whereas basalt is an extrusive igneous rock.

Sedimentary rocks are formed by the consolidation of the weathered fragments of pre-existing rocks, by the precipitation of minerals from solution, or by compaction of the remains of living organisms. The processes involving weathered rock fragments include erosion and transport by wind, water or ice, followed by deposition as sediments. As the sediments accumulate over time, those at the bottom are compacted. They are cemented by minerals precipitated from solution and become rocks.

The process of compaction and cementation is known as lithification . Some common types of sedimentary rocks are limestone, shale, and sandstone. Gypsum represents a sedimentary rock precipitated from solution. Fossil fuels such as coal and oil shale are sedimentary rocks formed from organic matter.

Metamorphic rocks are formed when solid igneous, sedimentary or metamorphic rocks change in response to elevated temperature and pressure and/or chemically active fluids. This alteration usually occurs subsurface. It may involve a change in texture (recrystallization), a change in mineralogy or both. Marble is a metamorphosed form of limestone, while slate is transformed shale. Anthracite is a metamorphic form of coal.

The rock cycle illustrates connections between the earth's internal and external processes and how the three basic rock groups are related to one another. Internal processes include melting and metamorphism due to elevated temperature and pressure. Convective currents in the mantle keep the crust in constant motion (plate tectonics). Buried rocks are brought to the surface (uplift), and surface rocks and sediments are transported to the upper mantle region (subduction).

Two important external processes in the rock cycle are weathering and erosion. Weathering is the process by which rock materials are broken down into smaller pieces and/or chemically changed. Once rock materials are broken down into smaller pieces, they can be transported elsewhere in a process called erosion. The main vehicle of erosion is moving water, but wind and glaciers can also erode rock.

Soil formation

Soil is one of the earth's most precious and delicate resources. Its formation involves the weathering of parent materials (e.g., rocks) and biological activity. Soil has four principal components: water, eroded inorganic parent material, air, and organic matter (e.g., living and decaying organisms).

Soil formation begins with unconsolidated materials that are the products of weathering . These materials may be transported to the location of soil formation by processes such as wind or water, or may result from the weathering of underlying bedrock. The weathering process involves the disintegration and decomposition of the rock. It can be physical (e.g., water seeping into rock cracks and then freezing) or chemical (e.g., dissolution of minerals by acid rain). Physical processes are more prevalent in cold and dry climates, while chemical processes are more prevalent in warm or moist climates.

Soil materials tend to move vertically in the formation environment. Organic materials (e.g., leaf litter) and sediments can be added, while other materials (e.g., minerals) can be lost due to erosion and leaching. Living organisms (e.g., bacteria, fungi, worms, and insects) also become incorporated into the developing soil.

The living component of the soil breaks down other organic materials to release their nutrients (e.g., nitrogen, potassium and phosphorous). The nutrients are then used and recycled by growing plants and other organisms. This recycling of nutrients helps create and maintain a viable soil.

Several factors influence soil formation including: climate, parent material, biologic organisms, topography and time. The climate of an area (precipitation and temperature) may be the most important factor in soil formation. Temperature affects the rates of chemical reactions and rainfall affects soil pH and leaching. Parent material or bedrock varies from region to region and can affect the texture and pH of soils. Vegetation type affects the rate at which nutrients in the soil are recycled, the type and amount of organic matter in the soil, soil erosion, and the types and numbers of micro-organisms living in the soil.

Humans can also have a profound effect on soils through such activities as plowing, irrigating and mining. The topography of a region affects rainfall runoff, erosion and solar energy intake. Soil formation is a continuous process. Soils change with time as factors such as organic matter input and mineral content change. The process of making a soil suitable for use by humans can take tens of thousands of years. Unfortunately, the destruction of that soil can occur in a few short generations.

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Ap environmental science. OpenStax CNX. Sep 25, 2009 Download for free at http://cnx.org/content/col10548/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ap environmental science' conversation and receive update notifications?