Page 1 / 1

A quadrilateral is any polygon with four sides. The basic quadrilaterals are the trapezium, parallelogram, rectangle, rhombus, square and kite.

## Trapezium

A trapezium is a quadrilateral with one pair of parallel opposite sides. It may also be called a trapezoid . A special type of trapezium is the isosceles trapezium , where one pair of opposite sides is parallel, the other pair of sides is equal in length and the angles at the ends of each parallel side are equal. An isosceles trapezium has one line of symmetry and its diagonals are equal in length.

## Parallelogram

A trapezium with both sets of opposite sides parallel is called a parallelogram . A summary of the properties of a parallelogram is:

• Both pairs of opposite sides are parallel.
• Both pairs of opposite sides are equal in length.
• Both pairs of opposite angles are equal.
• Both diagonals bisect each other (i.e. they cut each other in half).

## Rectangle

A rectangle is a parallelogram that has all four angles equal to ${90}^{\circ }$ . A summary of the properties of a rectangle is:

• Both pairs of opposite sides are parallel.
• Both pairs of opposite sides are of equal length.
• Both diagonals bisect each other.
• Diagonals are equal in length.
• All angles at the corners are right angles.

## Rhombus

A rhombus is a parallelogram that has all four sides of equal length. A summary of the properties of a rhombus is:

• Both pairs of opposite sides are parallel.
• All sides are equal in length.
• Both pairs of opposite angles are equal.
• Both diagonals bisect each other at ${90}^{\circ }$ .
• Diagonals of a rhombus bisect both pairs of opposite angles. An example of a rhombus. A rhombus is a parallelogram with all sides equal.

## Square

A square is a rhombus that has all four angles equal to 90 ${}^{\circ }$ .

A summary of the properties of a square is:

• Both pairs of opposite sides are parallel.
• All sides are equal in length.
• All angles are equal to ${90}^{\circ }$ .
• Both pairs of opposite angles are equal.
• Both diagonals bisect each other at ${90}^{\circ }$ .
• Diagonals are equal in length.
• Diagonals bisect both pairs of opposite angles (ie. all ${45}^{\circ }$ ). An example of a square. A square is a rhombus with all angles equal to 90 ∘ .

## Kite

A kite is a quadrilateral with two pairs of adjacent sides equal.

A summary of the properties of a kite is:

• Two pairs of adjacent sides are equal in length.
• One pair of opposite angles are equal where the angles are between unequal sides.
• One diagonal bisects the other diagonal and one diagonal bisects one pair of opposite angles.
• Diagonals intersect at right-angles.

how can chip be made from sand
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!

#### Get Jobilize Job Search Mobile App in your pocket Now! By OpenStax By OpenStax By Steve Gibbs By OpenStax By OpenStax By OpenStax By LaToya Trowers By Brooke Delaney By By