<< Chapter < Page Chapter >> Page >

The process was to divide, multiply, and subtract.

Review of subtraction of polynomials

A very important step in the process of dividing one polynomial by another is subtraction of polynomials. Let’s review the process of subtraction by observing a few examples.

1. Subtract x 2 from x 5 ; that is, find ( x 5 ) ( x 2 ) .

 Since   x 2 is preceded by a minus sign, remove the parentheses, change the sign of each term, then add.

  x 5 ( x 2 ) = x 5 x + 2 3

The result is 3.

2. Subtract x 3 + 3 x 2 from x 3 + 4 x 2 + x 1.

 Since x 3 + 3 x 2 is preceded by a minus sign, remove the parentheses, change the sign of each term, then add.

x 3 + 4 x 2 + x 1 ( x 3 + 3 x 2 ) = x 3 + 4 x 2 + x 1 x 3 3 x 2 x 2 + x 1

The result is x 2 + x 1.

3. Subtract x 2 + 3 x from x 2 + 1.

 We can write x 2 + 1 as x 2 + 0 x + 1.

x 2 + 1 ( x 2 + 3 x ) = x 2 + 0 x + 1 ( x 2 + 3 x ) = x 2 + 0 x + 1 x 2 3 x 3 x + 1

Dividing a polynomial by a polynomial

Now we’ll observe some examples of dividing one polynomial by another. The process is the same as the process used with whole numbers: divide, multiply, subtract, divide, multiply, subtract,....

The division, multiplication, and subtraction take place one term at a time. The process is concluded when the polynomial remainder is of lesser degree than the polynomial divisor.

Sample set b

Perform the division.

x 5 x 2 . We are to divide  x 5  by  x 2.

Long division showing x minus two dividing x minus five with the comment 'Divide x into x' on the right side. This division is not performed completely. See the longdesc for a full description.

1 3 x 2 Thus, x 5 x 2 = 1 3 x 2

x 3 + 4 x 2 + x 1 x + 3 . We are to divide  x 3 + 4 x 2 + x 1  by  x + 3.

Long division showing x plus three dividing x cube plus four x square plus x minus one with the comment 'Divide x into x cube' on the right side. This division is not performed completely. See the longdesc for a full description

x 2 + x 2 + 5 x + 3 Thus, x 3 + 4 x 2 + x 1 x + 3 = x 2 + x 2 + 5 x + 3

Practice set b

Perform the following divisions.

x + 6 x 1

1 + 7 x 1

x 2 + 2 x + 5 x + 3

x 1 + 8 x + 3

x 3 + x 2 x 2 x + 8

x 2 7 x + 55 442 x + 8

x 3 + x 2 3 x + 1 x 2 + 4 x 5

x 3 + 14 x 14 x 2 + 4 x 5 = x 3 + 14 x + 5

Sample set c

Divide  2 x 3 4 x + 1 by  x + 6. 2 x 3 4 x + 1 x + 6 Notice that the  x 2  term in the numerator is missing .  We can avoid any confusion by writing 2 x 3 + 0 x 2 4 x + 1 x + 6 Divide, multiply, and subtract .

Steps of long division showing the quantity x plus six dividing the quantity two x cubed plus zero x squared minus four x minus plus one. See the longdesc for a full description

2 x 3 4 x + 1 x + 6 = 2 x 3 12 x + 68 407 x + 6

Practice set c

Perform the following divisions.

x 2 3 x + 2

x 2 + 1 x + 2

4 x 2 1 x 3

4 x + 12 + 35 x 3

x 3 + 2 x + 2 x 2

x 2 + 2 x + 6 + 14 x 2

6 x 3 + 5 x 2 1 2 x + 3

3 x 2 2 x + 3 10 2 x + 3

Exercises

For the following problems, perform the divisions.

6 a + 12 2

3 a + 6

12 b 6 3

8 y 4 4

2 y + 1

21 a 9 3

3 x 2 6 x 3

x ( x 2 )

4 y 2 2 y 2 y

9 a 2 + 3 a 3 a

3 a + 1

20 x 2 + 10 x 5 x

6 x 3 + 2 x 2 + 8 x 2 x

3 x 2 + x + 4

26 y 3 + 13 y 2 + 39 y 13 y

a 2 b 2 + 4 a 2 b + 6 a b 2 10 a b a b

a b + 4 a + 6 b 10

7 x 3 y + 8 x 2 y 3 + 3 x y 4 4 x y x y

5 x 3 y 3 15 x 2 y 2 + 20 x y 5 x y

x 2 y 2 + 3 x y 4

4 a 2 b 3 8 a b 4 + 12 a b 2 2 a b 2

6 a 2 y 2 + 12 a 2 y + 18 a 2 24 a 2

1 4 y 2 + 1 2 y + 3 4

3 c 3 y 3 + 99 c 3 y 4 12 c 3 y 5 3 c 3 y 3

16 a x 2 20 a x 3 + 24 a x 4 6 a 4

8 x 2 10 x 3 + 12 x 4 3 a 3 or 12 x 4 10 x 3 + 8 x 2 3 a 3

21 a y 3 18 a y 2 15 a y 6 a y 2

14 b 2 c 2 + 21 b 3 c 3 28 c 3 7 a 2 c 3

2 b 2 3 b 3 c + 4 c a 2 c

30 a 2 b 4 35 a 2 b 3 25 a 2 5 b 3

x + 6 x 2

1 + 8 x 2

y + 7 y + 1

x 2 x + 4 x + 2

x 3 + 10 x + 2

x 2 + 2 x 1 x + 1

x 2 x + 3 x + 1

x 2 + 5 x + 1

x 2 + 5 x + 5 x + 5

x 2 2 x + 1

x 1 1 x + 1

a 2 6 a + 2

y 2 + 4 y + 2

y 2 + 8 y + 2

x 2 + 36 x + 6

x 3 1 x + 1

x 2 x + 1 2 x + 1

a 3 8 a + 2

x 3 1 x 1

x 2 + x + 1

a 3 8 a 2

x 3 + 3 x 2 + x 2 x 2

x 2 + 5 x + 11 + 20 x 2

a 3 + 2 a 2 a + 1 a 3

a 3 + a + 6 a 1

a 2 + a + 2 + 8 a 1

x 3 + 2 x + 1 x 3

y 3 + 3 y 2 + 4 y + 2

y 2 + y 2 + 8 y + 2

y 3 + 5 y 2 3 y 1

x 3 + 3 x 2 x + 3

x 2

a 2 + 2 a a + 2

x 2 x 6 x 2 2 x 3

1 + 1 x + 1

a 2 + 5 a + 4 a 2 a 2

2 y 2 + 5 y + 3 y 2 3 y 4

2 + 11 y 4

3 a 2 + 4 a 4 a 2 + 3 a + 3

2 x 2 x + 4 2 x 1

x + 4 2 x 1

3 a 2 + 4 a + 2 3 a + 4

6 x 2 + 8 x 1 3 x + 4

2 x 1 3 x + 4

20 y 2 + 15 y 4 4 y + 3

4 x 3 + 4 x 2 3 x 2 2 x 1

2 x 2 + 3 x 2 2 x 1

9 a 3 18 a 2 + 8 a 1 3 a 2

4 x 4 4 x 3 + 2 x 2 2 x 1 x 1

4 x 3 + 2 x 1 x 1

3 y 4 + 9 y 3 2 y 2 6 y + 4 y + 3

3 y 2 + 3 y + 5 y 2 + y + 1

3 + 2 y 2 + y + 1

2 a 2 + 4 a + 1 a 2 + 2 a + 3

8 z 6 4 z 5 8 z 4 + 8 z 3 + 3 z 2 14 z 2 z 3

4 z 5 + 4 z 4 + 2 z 3 + 7 z 2 + 12 z + 11 + 33 2 z 3

9 a 7 + 15 a 6 + 4 a 5 3 a 4 a 3 + 12 a 2 + a 5 3 a + 1

( 2 x 5 + 5 x 4 1 ) ÷ ( 2 x + 5 )

x 4 1 2 x + 5

( 6 a 4 2 a 3 3 a 2 + a + 4 ) ÷ ( 3 a 1 )

Exercises for review

( [link] ) Find the product. x 2 + 2 x 8 x 2 9 · 2 x + 6 4 x 8 .

x + 4 2 ( x 3 )

( [link] ) Find the sum. x 7 x + 5 + x + 4 x 2 .

( [link] ) Solve the equation 1 x + 3 + 1 x 3 = 1 x 2 9 .

x = 1 2

( [link] ) When the same number is subtracted from both the numerator and denominator of 3 10 , the result is 1 8 . What is the number that is subtracted?

( [link] ) Simplify 1 x + 5 4 x 2 25 .

x 5 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra ii for the community college. OpenStax CNX. Jul 03, 2014 Download for free at http://cnx.org/content/col11671/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra ii for the community college' conversation and receive update notifications?

Ask