<< Chapter < Page Chapter >> Page >


Area (oppervlakte) van poligone

  1. Area van driehoek: 1 2 × basis × loodregte hoogte
  2. Area van trapesium: 1 2 × (som van (parallelle) sye) × loodregte hoogte
  3. Area van parallelogram en rombus: basis × loodregte hoogte
  4. Area van reghoek: lengte × breedte
  5. Area van vierkant: sylengte × sylengte
  6. Area van sirkel: π x radius 2

Khan akademie video oor area en omtrek

Khan akademie video oor area van ʼn sirkel

Vind die area van die volgende figure:

  1. Ons moet eers vir BE, die loodregte hoogte van die parallelogram vind. Ons kan Pythagoras gebruik om dit te doen:
    BE 2 = AB 2 AE 2 BE 2 = 5 2 3 2 BE 2 = 16 BE = 4
  2. Ons pas die formule vir die area van ʼn parallelogram toe om die berekening te doen:
    Area = h × b = 4 × 7 = 28


  1. Sê of die bewering WAAR of VALS is in elk van die gevalle hieronder. Indien die bewering vals is, gee ʼn teen-voorbeeld om dit te staaf:
    1. Alle vierkante is reghoeke.
    2. Alle reghoeke is vierkante.
    3. Alle pentagone is gelykvormig.
    4. Alle gelyksydige driehoeke is gelykvormig.
    5. Alle pentagone is kongruent.
    6. Alle gelyksydige driehoeke is kongruent.
  2. Vind die areas vir elk van die gegewe figure. Onthou area word gemeet in vierkante eenhede (cm 2 , m 2 , mm 2 ).

Reghoekige prismas en silinders

In hierdie afdeling leer ons hoe om die oppervlakarea (buite-oppervlakte) en volume van reghoekige prismas en silinders te bereken. ʼn Reghoekige prisma is ʼn veelhoek wat uitgerek word in ʼn kolom sodat die hoogte van die kolom reghoekig tot sy basis is. ʼn Vierkantige prisma het ʼn vierkantige basis en ʼn driehoekige prisma het ʼn driehoekige basis.

Voorbeelde van ʼn vierkantige prisma, ʼn driehoekige prisma en ʼn silinder

Dit is eenvoudig om die oppervlakarea en volume van prismas te bereken.


Die term oppervlakarea verwys na die totale area van die oppervlak aan die buitekant van die prisma. Dit is makliker om te verstaan as ʼn mens aan die prisma dink as ʼn soliede voorwerp.

As jy die prismas in [link] bestudeer, sal jy sien dat die boonste syvlak van die prisma ʼn eenvoudige veelhoek is. Die driehoekige prisma het twee syvlakke wat driehoekig is en drie syvlakke wat reghoekig is. Om die oppervlakarea van ʼn prisma te bereken moet die oppervlak van elke syvlak bereken word en bymekaar getel word. ʼn Silinder bestaan uit twee sirkelvormige syvlakke en ʼn reghoekige kolom.

Oppervlakarea van Prismas

Bereken die area van elke syvlak en tel die areas bymekaar om die oppervlakarea van die prisma te bereken. Bepaal eers wat die regte vorm is van elke syvlak en bereken dan die area van daardie syvlak. Die oppervlakarea van die prisma is gelyk aan die som van die oppervlakareas van al die syvlakke.

Bespreking: oppervlakareas

In pare, bestudeer die volgende prismas saam met die diagram wat langs elke prisma vertoon word en verduidelik watter oppervlakareas elke prisma het. Verduidelik vir jou maat hoe elke diagram verband hou met die gepaardgaande prisma.

Aktiwiteit: oppervlakarea

Soek ʼn prentjie of neem ʼn foto van ʼn gebou wat nie ʼn eenvoudig gedefinieërde vorm het nie (byvoorbeeld een wat nie net ʼn reghoek is nie). Soek vir ʼn kasteel met torings of ʼn huis met gewels of ʼn stoep. Veronderstel jy moet die buitekant van die gebou verf. Hoeveel verf sal jy benodig? Dink aan dit wat jy geleer het omtrent oppervlakarea van poligone. Kan jy reëlmatige poligone in jou prent/foto vind en hulle gebruik om die oppervlakarea te bereken?

Questions & Answers

How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
How can I make nanorobot?
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
how can I make nanorobot?
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Siyavula textbooks: wiskunde (graad 10) [caps]. OpenStax CNX. Aug 04, 2011 Download for free at http://cnx.org/content/col11328/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: wiskunde (graad 10) [caps]' conversation and receive update notifications?