<< Chapter < Page Chapter >> Page >
This module describes the reconstruction, also known as interpolation, of a continuous time signal from a discrete time signal, including a discussion of cardinal spline filters.

Introduction

The sampling process produces a discrete time signal from a continuous time signal by examining the value of the continuous time signal at equally spaced points in time. Reconstruction, also known as interpolation, attempts to perform an opposite process that produces a continuous time signal coinciding with the points of the discrete time signal. Because the sampling process for general sets of signals is not invertible, there are numerous possible reconstructions from a given discrete time signal, each of which would sample to that signal at the appropriate sampling rate. This module will introduce some of these reconstruction schemes.

Reconstruction

Reconstruction process

The process of reconstruction, also commonly known as interpolation, produces a continuous time signal that would sample to a given discrete time signal at a specific sampling rate. Reconstruction can be mathematically understood by first generating a continuous time impulse train

x i m p ( t ) = n = - x s ( n ) δ ( t - n T s )

from the sampled signal x s with sampling period T s and then applying a lowpass filter G that satisfies certain conditions to produce an output signal x ˜ . If G has impulse response g , then the result of the reconstruction process, illustrated in [link] , is given by the following computation, the final equation of which is used to perform reconstruction in practice.

x ˜ ( t ) = ( x i m p * g ) ( t ) = - x i m p ( τ ) g ( t - τ ) d τ = - n = - x s ( n ) δ ( τ - n T s ) g ( t - τ ) d τ = n = - x s ( n ) - δ ( τ - n T s ) g ( t - τ ) d τ = n = - x s ( n ) g ( t - n T s )
Block diagram of reconstruction process for a given lowpass filter G .

Reconstruction filters

In order to guarantee that the reconstructed signal x ˜ samples to the discrete time signal x s from which it was reconstructed using the sampling period T s , the lowpass filter G must satisfy certain conditions. These can be expressed well in the time domain in terms of a condition on the impulse response g of the lowpass filter G . The sufficient condition to be a reconstruction filters that we will require is that, for all n Z ,

g ( n T s ) = 1 n = 0 0 n 0 = δ ( n ) .

This means that g sampled at a rate T s produces a discrete time unit impulse signal. Therefore, it follows that sampling x ˜ with sampling period T s results in

x ˜ ( n T s ) = m = - x s ( m ) g ( n T s - m T s ) = m = - x s ( m ) g ( ( n - m ) T s ) = m = - x s ( m ) δ ( n - m ) = x s ( n ) ,

which is the desired result for reconstruction filters.

Cardinal basis splines

Since there are many continuous time signals that sample to a given discrete time signal, additional constraints are required in order to identify a particular one of these. For instance, we might require our reconstruction to yield a spline of a certain degree, which is a signal described in piecewise parts by polynomials not exceeding that degree. Additionally, we might want to guarantee that the function and a certain number of its derivatives are continuous.

This may be accomplished by restricting the result to the span of sets of certain splines, called basis splines or B-splines. Specifically, if a n th degree spline with continuous derivatives up to at least order n - 1 is required, then the desired function for a given T s belongs to the span of { B n ( t / T s - k ) | k Z } where

Questions & Answers

How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask