<< Chapter < Page Chapter >> Page >

The magnetic field lines also propagate away from the antenna at the speed of light, forming the other part of the electromagnetic wave, as seen in [link] (b). The magnetic part of the wave has the same period and wavelength as the electric part, since they are both produced by the same movement and separation of charges in the antenna.

The electric and magnetic waves are shown together at one instant in time in [link] . The electric and magnetic fields produced by a long straight wire antenna are exactly in phase. Note that they are perpendicular to one another and to the direction of propagation, making this a transverse wave    .

A part of the electromagnetic wave sent out from the antenna at one instant in time is shown. The wave is shown with the variation of two components, E and B, moving with velocity c. E is a sine wave in one plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. E and B are in phase, and they are perpendicular to one another and to the direction of propagation.
A part of the electromagnetic wave sent out from the antenna at one instant in time. The electric and magnetic fields ( E size 12{E} {} and B size 12{B} {} ) are in phase, and they are perpendicular to one another and the direction of propagation. For clarity, the waves are shown only along one direction, but they propagate out in other directions too.

Electromagnetic waves generally propagate out from a source in all directions, sometimes forming a complex radiation pattern. A linear antenna like this one will not radiate parallel to its length, for example. The wave is shown in one direction from the antenna in [link] to illustrate its basic characteristics.

Instead of the AC generator, the antenna can also be driven by an AC circuit. In fact, charges radiate whenever they are accelerated. But while a current in a circuit needs a complete path, an antenna has a varying charge distribution forming a standing wave    , driven by the AC. The dimensions of the antenna are critical for determining the frequency of the radiated electromagnetic waves. This is a resonant    phenomenon and when we tune radios or TV, we vary electrical properties to achieve appropriate resonant conditions in the antenna.

Receiving electromagnetic waves

Electromagnetic waves carry energy away from their source, similar to a sound wave carrying energy away from a standing wave on a guitar string. An antenna for receiving EM signals works in reverse. And like antennas that produce EM waves, receiver antennas are specially designed to resonate at particular frequencies.

An incoming electromagnetic wave accelerates electrons in the antenna, setting up a standing wave. If the radio or TV is switched on, electrical components pick up and amplify the signal formed by the accelerating electrons. The signal is then converted to audio and/or video format. Sometimes big receiver dishes are used to focus the signal onto an antenna.

In fact, charges radiate whenever they are accelerated. When designing circuits, we often assume that energy does not quickly escape AC circuits, and mostly this is true. A broadcast antenna is specially designed to enhance the rate of electromagnetic radiation, and shielding is necessary to keep the radiation close to zero. Some familiar phenomena are based on the production of electromagnetic waves by varying currents. Your microwave oven, for example, sends electromagnetic waves, called microwaves, from a concealed antenna that has an oscillating current imposed on it.

Questions & Answers

what is heat
Ojo Reply
heat is the transfer of internal energy from one point to another
HENRY
what is a wave
Williams Reply
wave means. A field of study
aondohemba
what are Atoms
aondohemba
is the movement back and front or up and down
sani
how ?
aondohemba
wave is a disturbance that transfers energy through matter or space with little or no associated mass.
lots
A wave is a motion of particles in disturbed medium that carry energy from one midium to another
conist
an atom is the smallest unit( particle) of an element that bares it's chemical properties
conist
what is electromagnetic induction?
conist
How is the de Broglie wavelength of electrons related to the quantization of their orbits in atoms and molecules?
Larissa Reply
How do you convert 0.0045kgcm³ to the si unit?
EDYKING Reply
how many state of matter do we really have like I mean... is there any newly discovered state of matter?
Falana Reply
I only know 5: •Solids •Liquids •Gases •Plasma •Bose-Einstein condensate
Thapelo
Alright Thank you
Falana
Which one is the Bose-Einstein
James
can you explain what plasma and the I her one you mentioned
Olatunde
u can say sun or stars are just the state of plasma
Mohit
but the are more than seven
Issa
list it out I wanna know
Cristal
what the meaning of continuum
Akhigbe Reply
What state of matter is fire
Thapelo Reply
fire is not in any state of matter...fire is rather a form of energy produced from an oxidising reaction.
Xenda
Isn`t fire the plasma state of matter?
Walter
all this while I taught it was plasma
Victor
How can you define time?
Thapelo Reply
Time can be defined as a continuous , dynamic , irreversible , unpredictable quantity .
Tanaya
unpredictable? but I can say after one o'clock its going to be two o'clock predictably!
Victor
how can we define vector
mahmud
I would define it as having a magnitude (size)with a direction. An example I can think of is a car traveling at 50m/s (magnitude) going North (direction)
Hanzo
as for me guys u would say time is quantity that measures how long it takes for a specific condition to happen e.g how long it takes for the day to end or how it takes for the travelling car to cover a km.
conist
what is the relativity of physics
Paul Reply
How do you convert 0.0045kgcm³ to the si unit?
flint
What is the formula for motion
Anthony Reply
V=u+at V²=u²-2as
flint
S=ut+½at
flint
they are eqns of linear motion
King
S=Vt
Thapelo
v=u+at s=ut+at^\2 v^=u^+2as where ^=2
King
hi
Mehadi
hello
King
Explain dopplers effect
Jennifer Reply
Not yet learnt
Bob
Explain motion with types
Bob
Acceleration is the change in velocity over time. Given this information, is acceleration a vector or a scalar quantity? Explain.
Alabi Reply
Scalar quantity Because acceleration has only magnitude
Bob
acleration is vectr quatity it is found in a spefied direction and it is product of displcemnt
bhat
its a scalar quantity
Paul
velocity is speed and direction. since velocity is a part of acceleration that makes acceleration a vector quantity. an example of this is centripetal acceleration. when you're moving in a circular patter at a constant speed, you are still accelerating because your direction is constantly changing.
Josh
acceleration is a vector quantity. As explained by Josh Thompson, even in circular motion, bodies undergoing circular motion only accelerate because on the constantly changing direction of their constant speed. also retardation and acceleration are differentiated by virtue of their direction in
fitzgerald
respect to prevailing force
fitzgerald
What is the difference between impulse and momentum?
Manyo
Momentum is the product of the mass of a body and the change in velocity of its motion. ie P=m(v-u)/t (SI unit is kgm/s). it is literally the impact of collision from a moving body. While Impulse is the product of momentum and time. I = Pt (SI unit is kgm) or it is literally the change in momentum
fitzgerald
Or I = m(v-u)
fitzgerald
the tendency of a body to maintain it's inertia motion is called momentum( I believe you know what inertia means) so for a body to be in momentum it will be really hard to stop such body or object..... this is where impulse comes in.. the force applied to stop the momentum of such body is impulse..
Pelumi
Calculation of kinetic and potential energy
dion Reply
K.e=mv² P.e=mgh
Malia
K is actually 1/2 mv^2
Josh
what impulse is given to an a-particle of mass 6.7*10^-27 kg if it is ejected from a stationary nucleus at a speed of 3.2*10^-6ms²? what average force is needed if it is ejected in approximately 10^-8 s?
John
speed=velocity÷time velocity=speed×time=3.2×10^-6×10^-8=32×10^-14m/s impulse [I]=∆momentum[P]=mass×velocity=6.7×10^-27×32×10^-14=214.4×10^-41kg/ms force=impulse÷time=214.4×10^-41÷10^-8=214.4×10^-33N. dats how I solved it.if wrong pls correct me.
Melody
what is sound wave
Nworu Reply
sound wave is a mechanical longitudinal wave that transfers energy from one point to another
Ogor
its a longitudnal wave which is associted wth compresion nad rearfractions
bhat
what is power
PROMISE Reply
it's also a capability to do something or act in a particular way.
Kayode
Newton laws of motion
Mike
power also known as the rate of ability to do work
Slim
power means capabilty to do work p=w/t its unit is watt or j/s it also represents how much work is done fr evry second
bhat

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask