# 3.7 Rational functions  (Page 11/16)

 Page 11 / 16

$f\left(x\right)=\frac{x}{2x+1}$

Local behavior: $\text{\hspace{0.17em}}x\to -{\frac{1}{2}}^{+},f\left(x\right)\to -\infty ,x\to -{\frac{1}{2}}^{-},f\left(x\right)\to \infty \text{\hspace{0.17em}}$

End behavior: $\text{\hspace{0.17em}}x\to ±\infty ,f\left(x\right)\to \frac{1}{2}$

$f\left(x\right)=\frac{2x}{x-6}$

$f\left(x\right)=\frac{-2x}{x-6}$

Local behavior: $\text{\hspace{0.17em}}x\to {6}^{+},f\left(x\right)\to -\infty ,x\to {6}^{-},f\left(x\right)\to \infty ,\text{\hspace{0.17em}}$ End behavior: $\text{\hspace{0.17em}}x\to ±\infty ,f\left(x\right)\to -2$

$f\left(x\right)=\frac{{x}^{2}-4x+3}{{x}^{2}-4x-5}$

$f\left(x\right)=\frac{2{x}^{2}-32}{6{x}^{2}+13x-5}$

Local behavior: $\text{\hspace{0.17em}}x\to -{\frac{1}{3}}^{+},f\left(x\right)\to \infty ,x\to -{\frac{1}{3}}^{-},\text{\hspace{0.17em}}$ $f\left(x\right)\to -\infty ,x\to {\frac{5}{2}}^{-},f\left(x\right)\to \infty ,x\to {\frac{5}{2}}^{+}$ , $f\left(x\right)\to -\infty$

End behavior: $x\to ±\infty ,$ $f\left(x\right)\to \frac{1}{3}$

For the following exercises, find the slant asymptote of the functions.

$f\left(x\right)=\frac{24{x}^{2}+6x}{2x+1}$

$f\left(x\right)=\frac{4{x}^{2}-10}{2x-4}$

$y=2x+4$

$f\left(x\right)=\frac{81{x}^{2}-18}{3x-2}$

$f\left(x\right)=\frac{6{x}^{3}-5x}{3{x}^{2}+4}$

$y=2x$

$f\left(x\right)=\frac{{x}^{2}+5x+4}{x-1}$

## Graphical

For the following exercises, use the given transformation to graph the function. Note the vertical and horizontal asymptotes.

The reciprocal function shifted up two units.

The reciprocal function shifted down one unit and left three units.

The reciprocal squared function shifted to the right 2 units.

The reciprocal squared function shifted down 2 units and right 1 unit.

For the following exercises, find the horizontal intercepts, the vertical intercept, the vertical asymptotes, and the horizontal or slant asymptote of the functions. Use that information to sketch a graph.

$p\left(x\right)=\frac{2x-3}{x+4}$

$q\left(x\right)=\frac{x-5}{3x-1}$

$s\left(x\right)=\frac{4}{{\left(x-2\right)}^{2}}$

$r\left(x\right)=\frac{5}{{\left(x+1\right)}^{2}}$

$f\left(x\right)=\frac{3{x}^{2}-14x-5}{3{x}^{2}+8x-16}$

$g\left(x\right)=\frac{2{x}^{2}+7x-15}{3{x}^{2}-14+15}$

$a\left(x\right)=\frac{{x}^{2}+2x-3}{{x}^{2}-1}$

$b\left(x\right)=\frac{{x}^{2}-x-6}{{x}^{2}-4}$

$k\left(x\right)=\frac{2{x}^{2}-3x-20}{x-5}$

$w\left(x\right)=\frac{\left(x-1\right)\left(x+3\right)\left(x-5\right)}{{\left(x+2\right)}^{2}\left(x-4\right)}$

$z\left(x\right)=\frac{{\left(x+2\right)}^{2}\left(x-5\right)}{\left(x-3\right)\left(x+1\right)\left(x+4\right)}$

For the following exercises, write an equation for a rational function with the given characteristics.

Vertical asymptotes at $\text{\hspace{0.17em}}x=5\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}x=-5,\text{\hspace{0.17em}}$ x -intercepts at $\text{\hspace{0.17em}}\left(2,0\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(-1,0\right),\text{\hspace{0.17em}}$ y -intercept at $\text{\hspace{0.17em}}\left(0,4\right)$

$y=50\frac{{x}^{2}-x-2}{{x}^{2}-25}$

Vertical asymptotes at $\text{\hspace{0.17em}}x=-4\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}x=-1,\text{\hspace{0.17em}}$ x- intercepts at $\text{\hspace{0.17em}}\left(1,0\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(5,0\right),\text{\hspace{0.17em}}$ y- intercept at $\text{\hspace{0.17em}}\left(0,7\right)$

Vertical asymptotes at $\text{\hspace{0.17em}}x=-4\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}x=-5,\text{\hspace{0.17em}}$ x -intercepts at $\text{\hspace{0.17em}}\left(4,0\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(-6,0\right),\text{\hspace{0.17em}}$ Horizontal asymptote at $\text{\hspace{0.17em}}y=7$

$y=7\frac{{x}^{2}+2x-24}{{x}^{2}+9x+20}$

Vertical asymptotes at $\text{\hspace{0.17em}}x=-3\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}x=6,\text{\hspace{0.17em}}$ x -intercepts at $\text{\hspace{0.17em}}\left(-2,0\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(1,0\right),\text{\hspace{0.17em}}$ Horizontal asymptote at $\text{\hspace{0.17em}}y=-2$

Vertical asymptote at $\text{\hspace{0.17em}}x=-1,\text{\hspace{0.17em}}$ Double zero at $\text{\hspace{0.17em}}x=2,\text{\hspace{0.17em}}$ y -intercept at $\text{\hspace{0.17em}}\left(0,2\right)$

$y=\frac{1}{2}\frac{{x}^{2}-4x+4}{x+1}$

Vertical asymptote at $\text{\hspace{0.17em}}x=3,\text{\hspace{0.17em}}$ Double zero at $\text{\hspace{0.17em}}x=1,\text{\hspace{0.17em}}$ y -intercept at $\text{\hspace{0.17em}}\left(0,4\right)$

For the following exercises, use the graphs to write an equation for the function.

$y=4\frac{x-3}{{x}^{2}-x-12}$

$y=-9\frac{x-2}{{x}^{2}-9}$

$y=\frac{1}{3}\frac{{x}^{2}+x-6}{x-1}$

$y=-6\frac{{\left(x-1\right)}^{2}}{\left(x+3\right){\left(x-2\right)}^{2}}$

## Numeric

For the following exercises, make tables to show the behavior of the function near the vertical asymptote and reflecting the horizontal asymptote

$f\left(x\right)=\frac{1}{x-2}$

 $x$ 2.01 2.001 2.0001 1.99 1.999 $y$ 100 1,000 10,000 –100 –1,000
$x$ 10 100 1,000 10,000 100,000
$y$ .125 .0102 .001 .0001 .00001

Vertical asymptote $\text{\hspace{0.17em}}x=2,\text{\hspace{0.17em}}$ Horizontal asymptote $\text{\hspace{0.17em}}y=0$

$f\left(x\right)=\frac{x}{x-3}$

$f\left(x\right)=\frac{2x}{x+4}$

 $x$ –4.1 –4.01 –4.001 –3.99 –3.999 $y$ 82 802 8,002 –798 –7998
 $x$ 10 100 1,000 10,000 100,000 $y$ 1.4286 1.9331 1.992 1.9992 1.999992

Vertical asymptote $\text{\hspace{0.17em}}x=-4,\text{\hspace{0.17em}}$ Horizontal asymptote $\text{\hspace{0.17em}}y=2$

$f\left(x\right)=\frac{2x}{{\left(x-3\right)}^{2}}$

$f\left(x\right)=\frac{{x}^{2}}{{x}^{2}+2x+1}$

 $x$ –.9 –.99 –.999 –1.1 –1.01 $y$ 81 9,801 998,001 121 10,201
 $x$ 10 100 1,000 10,000 100,000 $y$ 0.82645 0.9803 .998 .9998

Vertical asymptote $\text{\hspace{0.17em}}x=-1,\text{\hspace{0.17em}}$ Horizontal asymptote $\text{\hspace{0.17em}}y=1$

## Technology

For the following exercises, use a calculator to graph $\text{\hspace{0.17em}}f\left(x\right).\text{\hspace{0.17em}}$ Use the graph to solve $\text{\hspace{0.17em}}f\left(x\right)>0.$

$f\left(x\right)=\frac{2}{x+1}$

$f\left(x\right)=\frac{4}{2x-3}$

$\left(\frac{3}{2},\infty \right)$

$f\left(x\right)=\frac{2}{\left(x-1\right)\left(x+2\right)}$

$f\left(x\right)=\frac{x+2}{\left(x-1\right)\left(x-4\right)}$

$\left(-2,1\right)\cup \left(4,\infty \right)$

$f\left(x\right)=\frac{{\left(x+3\right)}^{2}}{{\left(x-1\right)}^{2}\left(x+1\right)}$

## Extensions

For the following exercises, identify the removable discontinuity.

$f\left(x\right)=\frac{{x}^{2}-4}{x-2}$

$\left(2,4\right)$

$f\left(x\right)=\frac{{x}^{3}+1}{x+1}$

$f\left(x\right)=\frac{{x}^{2}+x-6}{x-2}$

$\left(2,5\right)$

$f\left(x\right)=\frac{2{x}^{2}+5x-3}{x+3}$

$f\left(x\right)=\frac{{x}^{3}+{x}^{2}}{x+1}$

$\left(–1,\text{1}\right)$

## Real-world applications

For the following exercises, express a rational function that describes the situation.

A large mixing tank currently contains 200 gallons of water, into which 10 pounds of sugar have been mixed. A tap will open, pouring 10 gallons of water per minute into the tank at the same time sugar is poured into the tank at a rate of 3 pounds per minute. Find the concentration (pounds per gallon) of sugar in the tank after $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ minutes.

A large mixing tank currently contains 300 gallons of water, into which 8 pounds of sugar have been mixed. A tap will open, pouring 20 gallons of water per minute into the tank at the same time sugar is poured into the tank at a rate of 2 pounds per minute. Find the concentration (pounds per gallon) of sugar in the tank after $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ minutes.

$C\left(t\right)=\frac{8+2t}{300+20t}$

For the following exercises, use the given rational function to answer the question.

The concentration $\text{\hspace{0.17em}}C\text{\hspace{0.17em}}$ of a drug in a patient’s bloodstream $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ hours after injection in given by $\text{\hspace{0.17em}}C\left(t\right)=\frac{2t}{3+{t}^{2}}.\text{\hspace{0.17em}}$ What happens to the concentration of the drug as $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ increases?

The concentration $\text{\hspace{0.17em}}C\text{\hspace{0.17em}}$ of a drug in a patient’s bloodstream $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ hours after injection is given by $\text{\hspace{0.17em}}C\left(t\right)=\frac{100t}{2{t}^{2}+75}.\text{\hspace{0.17em}}$ Use a calculator to approximate the time when the concentration is highest.

After about 6.12 hours.

For the following exercises, construct a rational function that will help solve the problem. Then, use a calculator to answer the question.

An open box with a square base is to have a volume of 108 cubic inches. Find the dimensions of the box that will have minimum surface area. Let $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ = length of the side of the base.

A rectangular box with a square base is to have a volume of 20 cubic feet. The material for the base costs 30 cents/ square foot. The material for the sides costs 10 cents/square foot. The material for the top costs 20 cents/square foot. Determine the dimensions that will yield minimum cost. Let $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ = length of the side of the base.

$A\left(x\right)=50{x}^{2}+\frac{800}{x}.\text{\hspace{0.17em}}$ 2 by 2 by 5 feet.

A right circular cylinder has volume of 100 cubic inches. Find the radius and height that will yield minimum surface area. Let $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ = radius.

A right circular cylinder with no top has a volume of 50 cubic meters. Find the radius that will yield minimum surface area. Let $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ = radius.

$A\left(x\right)=\pi {x}^{2}+\frac{100}{x}.\text{\hspace{0.17em}}$ Radius = 2.52 meters.

A right circular cylinder is to have a volume of 40 cubic inches. It costs 4 cents/square inch to construct the top and bottom and 1 cent/square inch to construct the rest of the cylinder. Find the radius to yield minimum cost. Let $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ = radius.

#### Questions & Answers

what is set?
a colony of bacteria is growing exponentially doubling in size every 100 minutes. how much minutes will it take for the colony of bacteria to triple in size
I got 300 minutes. is it right?
Patience
no. should be about 150 minutes.
Jason
It should be 158.5 minutes.
Mr
ok, thanks
Patience
100•3=300 300=50•2^x 6=2^x x=log_2(6) =2.5849625 so, 300=50•2^2.5849625 and, so, the # of bacteria will double every (100•2.5849625) = 258.49625 minutes
Thomas
what is the importance knowing the graph of circular functions?
can get some help basic precalculus
What do you need help with?
Andrew
how to convert general to standard form with not perfect trinomial
can get some help inverse function
ismail
Rectangle coordinate
how to find for x
it depends on the equation
Robert
yeah, it does. why do we attempt to gain all of them one side or the other?
Melissa
whats a domain
The domain of a function is the set of all input on which the function is defined. For example all real numbers are the Domain of any Polynomial function.
Spiro
Spiro; thanks for putting it out there like that, 😁
Melissa
foci (–7,–17) and (–7,17), the absolute value of the differenceof the distances of any point from the foci is 24.
difference between calculus and pre calculus?
give me an example of a problem so that I can practice answering
x³+y³+z³=42
Robert
dont forget the cube in each variable ;)
Robert
of she solves that, well ... then she has a lot of computational force under her command ....
Walter
what is a function?
I want to learn about the law of exponent
explain this
what is functions?
A mathematical relation such that every input has only one out.
Spiro
yes..it is a relationo of orders pairs of sets one or more input that leads to a exactly one output.
Mubita
Is a rule that assigns to each element X in a set A exactly one element, called F(x), in a set B.
RichieRich