# 3.3 Power functions and polynomial functions  (Page 8/19)

 Page 8 / 19

$f\left(t\right)=2\left(t-1\right)\left(t+2\right)\left(t-3\right)$

y -intercept is $\text{\hspace{0.17em}}\left(0,12\right),\text{\hspace{0.17em}}$ t -intercepts are

$g\left(n\right)=-2\left(3n-1\right)\left(2n+1\right)$

$f\left(x\right)={x}^{4}-16$

y -intercept is $\text{\hspace{0.17em}}\left(0,-16\right).\text{\hspace{0.17em}}$ x -intercepts are $\text{\hspace{0.17em}}\left(2,0\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(-2,0\right).$

$f\left(x\right)={x}^{3}+27$

$f\left(x\right)=x\left({x}^{2}-2x-8\right)$

y -intercept is $\text{\hspace{0.17em}}\left(0,0\right).\text{\hspace{0.17em}}$ x -intercepts are $\text{\hspace{0.17em}}\left(0,0\right),\left(4,0\right),\text{\hspace{0.17em}}$ and

$f\left(x\right)=\left(x+3\right)\left(4{x}^{2}-1\right)$

## Graphical

For the following exercises, determine the least possible degree of the polynomial function shown.

3

5

3

5

For the following exercises, determine whether the graph of the function provided is a graph of a polynomial function. If so, determine the number of turning points and the least possible degree for the function.

Yes. Number of turning points is 2. Least possible degree is 3.

Yes. Number of turning points is 1. Least possible degree is 2.

Yes. Number of turning points is 0. Least possible degree is 1.

No.

Yes. Number of turning points is 0. Least possible degree is 1.

## Numeric

For the following exercises, make a table to confirm the end behavior of the function.

$f\left(x\right)=-{x}^{3}$

$f\left(x\right)={x}^{4}-5{x}^{2}$

$x$ $f\left(x\right)$
10 9,500
100 99,950,000
–10 9,500
–100 99,950,000

$\text{as}\text{\hspace{0.17em}}x\to -\infty ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(x\right)\to \infty ,\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x\to \infty ,\text{\hspace{0.17em}}f\left(x\right)\to \infty$

$f\left(x\right)={x}^{2}{\left(1-x\right)}^{2}$

$f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(3-x\right)$

$x$ $f\left(x\right)$
10 –504
100 –941,094
–10 1,716
–100 1,061,106

$\text{as}\text{\hspace{0.17em}}x\to -\infty ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(x\right)\to \infty ,\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x\to \infty ,\text{\hspace{0.17em}}f\left(x\right)\to -\infty$

$f\left(x\right)=\frac{{x}^{5}}{10}-{x}^{4}$

## Technology

For the following exercises, graph the polynomial functions using a calculator. Based on the graph, determine the intercepts and the end behavior.

$f\left(x\right)={x}^{3}\left(x-2\right)$

The $\text{\hspace{0.17em}}y\text{-}$ intercept is The $\text{\hspace{0.17em}}x\text{-}$ intercepts are $\text{As}\text{\hspace{0.17em}}x\to -\infty ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(x\right)\to \infty ,\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x\to \infty ,\text{\hspace{0.17em}}f\left(x\right)\to \infty$

$f\left(x\right)=x\left(x-3\right)\left(x+3\right)$

$f\left(x\right)=x\left(14-2x\right)\left(10-2x\right)$

The $\text{\hspace{0.17em}}y\text{-}$ intercept is $\text{\hspace{0.17em}}\left(0,0\right)$ . The $\text{\hspace{0.17em}}x\text{-}$ intercepts are $\text{As}\text{\hspace{0.17em}}x\to -\infty ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(x\right)\to -\infty ,\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x\to \infty ,\text{\hspace{0.17em}}f\left(x\right)\to \infty$

$f\left(x\right)=x\left(14-2x\right){\left(10-2x\right)}^{2}$

$f\left(x\right)={x}^{3}-16x$

The $\text{\hspace{0.17em}}y\text{-}$ intercept is The $\text{\hspace{0.17em}}x\text{-}$ intercept is $As\text{\hspace{0.17em}}x\to -\infty ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(x\right)\to -\infty ,\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x\to \infty ,\text{\hspace{0.17em}}f\left(x\right)\to \infty$

$f\left(x\right)={x}^{3}-27$

$f\left(x\right)={x}^{4}-81$

The $\text{\hspace{0.17em}}y\text{-}$ intercept is The $\text{\hspace{0.17em}}x\text{-}$ intercept are $\text{As}\text{\hspace{0.17em}}x\to -\infty ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(x\right)\to \infty ,\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x\to \infty ,\text{\hspace{0.17em}}f\left(x\right)\to \infty$

$f\left(x\right)=-{x}^{3}+{x}^{2}+2x$

$f\left(x\right)={x}^{3}-2{x}^{2}-15x$

The $\text{\hspace{0.17em}}y\text{-}$ intercept is The $\text{\hspace{0.17em}}x\text{-}$ intercepts are $\text{As}\text{\hspace{0.17em}}x\to -\infty ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(x\right)\to -\infty ,\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x\to \infty ,\text{\hspace{0.17em}}f\left(x\right)\to \infty$

$f\left(x\right)={x}^{3}-0.01x$

## Extensions

For the following exercises, use the information about the graph of a polynomial function to determine the function. Assume the leading coefficient is 1 or –1. There may be more than one correct answer.

The $\text{\hspace{0.17em}}y-$ intercept is $\text{\hspace{0.17em}}\left(0,-4\right).\text{\hspace{0.17em}}$ The $\text{\hspace{0.17em}}x-$ intercepts are $\text{\hspace{0.17em}}\left(-2,0\right),\text{\hspace{0.17em}}\left(2,0\right).\text{\hspace{0.17em}}$ Degree is 2.

End behavior: $\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x\to -\infty ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(x\right)\to \infty ,\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x\to \infty ,\text{\hspace{0.17em}}f\left(x\right)\to \infty .$

$f\left(x\right)={x}^{2}-4$

The $\text{\hspace{0.17em}}y-$ intercept is $\text{\hspace{0.17em}}\left(0,9\right).\text{\hspace{0.17em}}$ The $\text{\hspace{0.17em}}x\text{-}$ intercepts are $\text{\hspace{0.17em}}\left(-3,0\right),\text{\hspace{0.17em}}\left(3,0\right).\text{\hspace{0.17em}}$ Degree is 2.

End behavior: $\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x\to -\infty ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(x\right)\to -\infty ,\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x\to \infty ,\text{\hspace{0.17em}}f\left(x\right)\to -\infty .$

The $\text{\hspace{0.17em}}y-$ intercept is $\text{\hspace{0.17em}}\left(0,0\right).\text{\hspace{0.17em}}$ The $\text{\hspace{0.17em}}x-$ intercepts are $\text{\hspace{0.17em}}\left(0,0\right),\text{\hspace{0.17em}}\left(2,0\right).\text{\hspace{0.17em}}$ Degree is 3.

End behavior: $\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x\to -\infty ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(x\right)\to -\infty ,\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x\to \infty ,\text{\hspace{0.17em}}f\left(x\right)\to \infty .$

$f\left(x\right)={x}^{3}-4{x}^{2}+4x$

The $\text{\hspace{0.17em}}y-$ intercept is $\text{\hspace{0.17em}}\left(0,1\right).\text{\hspace{0.17em}}$ The $\text{\hspace{0.17em}}x-$ intercept is $\text{\hspace{0.17em}}\left(1,0\right).\text{\hspace{0.17em}}$ Degree is 3.

End behavior: $\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x\to -\infty ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(x\right)\to \infty ,\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x\to \infty ,\text{\hspace{0.17em}}f\left(x\right)\to -\infty .$

The $\text{\hspace{0.17em}}y-$ intercept is $\text{\hspace{0.17em}}\left(0,1\right).\text{\hspace{0.17em}}$ There is no $\text{\hspace{0.17em}}x-$ intercept. Degree is 4.

End behavior: $\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x\to -\infty ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(x\right)\to \infty ,\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x\to \infty ,\text{\hspace{0.17em}}f\left(x\right)\to \infty .$

$f\left(x\right)={x}^{4}+1$

## Real-world applications

For the following exercises, use the written statements to construct a polynomial function that represents the required information.

An oil slick is expanding as a circle. The radius of the circle is increasing at the rate of 20 meters per day. Express the area of the circle as a function of $\text{\hspace{0.17em}}d,\text{\hspace{0.17em}}$ the number of days elapsed.

A cube has an edge of 3 feet. The edge is increasing at the rate of 2 feet per minute. Express the volume of the cube as a function of $\text{\hspace{0.17em}}m,\text{\hspace{0.17em}}$ the number of minutes elapsed.

$V\left(m\right)=8{m}^{3}+36{m}^{2}+54m+27$

A rectangle has a length of 10 inches and a width of 6 inches. If the length is increased by $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ inches and the width increased by twice that amount, express the area of the rectangle as a function of $\text{\hspace{0.17em}}x.$

An open box is to be constructed by cutting out square corners of $\text{\hspace{0.17em}}x-$ inch sides from a piece of cardboard 8 inches by 8 inches and then folding up the sides. Express the volume of the box as a function of $\text{\hspace{0.17em}}x.$

$V\left(x\right)=4{x}^{3}-32{x}^{2}+64x$

A rectangle is twice as long as it is wide. Squares of side 2 feet are cut out from each corner. Then the sides are folded up to make an open box. Express the volume of the box as a function of the width ( $x$ ).

"7"has an open circle and "10"has a filled in circle who can I have a set builder notation
x=-b+_Гb2-(4ac) ______________ 2a
I've run into this: x = r*cos(angle1 + angle2) Which expands to: x = r(cos(angle1)*cos(angle2) - sin(angle1)*sin(angle2)) The r value confuses me here, because distributing it makes: (r*cos(angle2))(cos(angle1) - (r*sin(angle2))(sin(angle1)) How does this make sense? Why does the r distribute once
so good
abdikarin
this is an identity when 2 adding two angles within a cosine. it's called the cosine sum formula. there is also a different formula when cosine has an angle minus another angle it's called the sum and difference formulas and they are under any list of trig identities
strategies to form the general term
carlmark
How can you tell what type of parent function a graph is ?
generally by how the graph looks and understanding what the base parent functions look like and perform on a graph
William
if you have a graphed line, you can have an idea by how the directions of the line turns, i.e. negative, positive, zero
William
y=x will obviously be a straight line with a zero slope
William
y=x^2 will have a parabolic line opening to positive infinity on both sides of the y axis vice versa with y=-x^2 you'll have both ends of the parabolic line pointing downward heading to negative infinity on both sides of the y axis
William
y=x will be a straight line, but it will have a slope of one. Remember, if y=1 then x=1, so for every unit you rise you move over positively one unit. To get a straight line with a slope of 0, set y=1 or any integer.
Aaron
yes, correction on my end, I meant slope of 1 instead of slope of 0
William
what is f(x)=
I don't understand
Joe
Typically a function 'f' will take 'x' as input, and produce 'y' as output. As 'f(x)=y'. According to Google, "The range of a function is the complete set of all possible resulting values of the dependent variable (y, usually), after we have substituted the domain."
Thomas
Sorry, I don't know where the "Â"s came from. They shouldn't be there. Just ignore them. :-)
Thomas
Darius
Thanks.
Thomas
Â
Thomas
It is the Â that should not be there. It doesn't seem to show if encloses in quotation marks. "Â" or 'Â' ... Â
Thomas
Now it shows, go figure?
Thomas
what is this?
i do not understand anything
unknown
lol...it gets better
Darius
I've been struggling so much through all of this. my final is in four weeks 😭
Tiffany
this book is an excellent resource! have you guys ever looked at the online tutoring? there's one that is called "That Tutor Guy" and he goes over a lot of the concepts
Darius
thank you I have heard of him. I should check him out.
Tiffany
is there any question in particular?
Joe
I have always struggled with math. I get lost really easy, if you have any advice for that, it would help tremendously.
Tiffany
Sure, are you in high school or college?
Darius
Hi, apologies for the delayed response. I'm in college.
Tiffany
how to solve polynomial using a calculator
So a horizontal compression by factor of 1/2 is the same as a horizontal stretch by a factor of 2, right?
The center is at (3,4) a focus is at (3,-1), and the lenght of the major axis is 26
The center is at (3,4) a focus is at (3,-1) and the lenght of the major axis is 26 what will be the answer?
Rima
I done know
Joe
What kind of answer is that😑?
Rima
I had just woken up when i got this message
Joe
Rima
i have a question.
Abdul
how do you find the real and complex roots of a polynomial?
Abdul
@abdul with delta maybe which is b(square)-4ac=result then the 1st root -b-radical delta over 2a and the 2nd root -b+radical delta over 2a. I am not sure if this was your question but check it up
Nare
This is the actual question: Find all roots(real and complex) of the polynomial f(x)=6x^3 + x^2 - 4x + 1
Abdul
@Nare please let me know if you can solve it.
Abdul
I have a question
juweeriya
hello guys I'm new here? will you happy with me
mustapha
The average annual population increase of a pack of wolves is 25.
how do you find the period of a sine graph
Period =2π if there is a coefficient (b), just divide the coefficient by 2π to get the new period
Am
if not then how would I find it from a graph
Imani
by looking at the graph, find the distance between two consecutive maximum points (the highest points of the wave). so if the top of one wave is at point A (1,2) and the next top of the wave is at point B (6,2), then the period is 5, the difference of the x-coordinates.
Am
you could also do it with two consecutive minimum points or x-intercepts
Am
I will try that thank u
Imani
Case of Equilateral Hyperbola
ok
Zander
ok
Shella
f(x)=4x+2, find f(3)
Benetta
f(3)=4(3)+2 f(3)=14
lamoussa
14
Vedant
pre calc teacher: "Plug in Plug in...smell's good" f(x)=14
Devante
8x=40
Chris
Explain why log a x is not defined for a < 0
the sum of any two linear polynomial is what
Momo