# 2.2 Functions  (Page 2/3)

 Page 2 / 3

$\text{Domain of "f"}=A$

$\text{Co-domain of "f"}=B$

$\text{Range of "f"}=\text{Set of images}=\left\{f\left(x\right):x\in A\right\}$

## Equal functions

Two functions are equal, if each ordered pair in one of the two functions is uniquely present in other function. It means that if “g” and “h” be two equal functions, then :

$g\left(x\right)=h\left(x\right)\phantom{\rule{1em}{0ex}}\text{for all}\phantom{\rule{1em}{0ex}}“x”$

Two functions g(x) and h(x) are equal or identical, if all images of two functions are equal. Further, we can visualize equality of two functions in a negative context. If there exists “x” such that g(x)≠ h(x), then two functions are not equal. We state this symbolically as :

$\text{If}\phantom{\rule{1em}{0ex}}g\left(x\right)\ne h\left(x\right),\phantom{\rule{1em}{0ex}}\text{then}\phantom{\rule{1em}{0ex}}f\ne h$

The important question, however, is that whether equality of functions in terms of equality of images is a sufficient condition? We can see here that two functions can meet the stated condition even if they are constituted by different sets of ordered pair. There may be additional ordered pairs, which are present in one, but not in other.

In order to remove such possibilities, two equal functions should have same domain. This will ensure that set of ordered pairs in two functions are same. We conclude this discussion by saying that two functions are equal, iff

• g(x) = h(x) for all “x”
• Domain of “f” = Domain of “h”

It is clear that equality of functions, however, do not require that co-domains be equal.

## Real function

If the range of a function is a set of real numbers, then the function is called “real valued function”. In other words, if the range of a function is either the set “R” or its subset, then it is a real valued function. We should emphasize here that “R” denotes set of real number and it is not the symbol for relation, which is also denoted as “R”.

Further, we distinguish “real valued function” from “real function”. The very terminology is indicative of the difference. The term “real valued function” means that the value of function i.e. image is real. It does not say anything about “pre-image”. Now, there can be a function, which accepts non-real complex numbers, but maps to a real value.

On the other hand, a real function has both image and pre-image as real numbers. It follows then that the domain of a “real function” is also either a set or subset of real numbers.

Real function
A function is a real function, if its domain and range are either “R” or subset of “R”.

Our discussion from this point onwards in the course relates to real function only – unless otherwise stated.

## Interpretation of function relation

It is intuitive to find similarity of an algebraic equation to the “rule” of a function. Consider an equation,

$y={x}^{2}+1$

This equation is valid for all real values of “x”. The set of real values of “x”, belongs to set “R”. The set of values of “y” also belongs to set of “R”. On the other hand, the equation itself is the rule that maps two sets comprising of values of “x” and “y”.

Alternatively, we can write the rule also as :

$⇒f\left(x\right)={x}^{2}+1$

In terms of rule, we define function, saying that :

$f:R\to R\phantom{\rule{1em}{0ex}}by\phantom{\rule{1em}{0ex}}f\left(x\right)={x}^{2}+1$

We read it as : “f” is a function from “R” to “R” by the rule given by $f\left(x\right)={x}^{2}+1$ .

From this description, we think a function as a relation, which is governed by a specified rule. The rule relates two sets known as domain and co-domain, which are sets of real numbers. One of the quantities “x” is independent of other quantity “y”. The other quantity “y” is a dependent on quantity “x”. In plain words, one of the interpretations is that function relates dependent and independent variables. As a matter of fact, we would attach additional meanings to the concept of function as we proceed to study it in details.

#### Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
What is power set
Period of sin^6 3x+ cos^6 3x
Period of sin^6 3x+ cos^6 3x   By  By By    By