<< Chapter < Page Chapter >> Page >
This module covers techniques for the simplification of radicals.

Simplifying radicals

The property ab size 12{ sqrt { ital "ab"} } {} = a size 12{ sqrt {a} } {} b size 12{ sqrt {b} } {} can be used to simplify radicals. The key is to break the number inside the root into two factors, one of which is a perfect square .

Simplifying a radical

75 size 12{ sqrt {"75"} } {}
= 25 3 because 25•3 is 75, and 25 is a perfect square
= 25 3 because ab size 12{ sqrt { ital "ab"} } {} = a size 12{ sqrt {a} } {} b size 12{ sqrt {b} } {}
= 5 3 size 12{ sqrt {3} } {} because 25 =5
Got questions? Get instant answers now!

So we conclude that 75 size 12{ sqrt {"75"} } {} =5 3 size 12{ sqrt {3} } {} . You can confirm this on your calculator (both are approximately 8.66).

We rewrote 75 as 25 3 because 25 is a perfect square. We could, of course, also rewrite 75 as 5 15 , but—although correct—that would not help us simplify, because neither number is a perfect square.

Simplifying a radical in two steps

180
= 9•20 because 9 20 is 180, and 9 is a perfect square
= 9 20 because ab size 12{ sqrt { ital "ab"} } {} = a size 12{ sqrt {a} } {} b size 12{ sqrt {b} } {}
= 3 20 So far, so good. But wait! We’re not done!
= 3 4•5 There’s another perfect square to pull out!
= 3 4 5
= 3 ( 2 ) 5
= 6 5 Now we’re done.
Got questions? Get instant answers now!

The moral of this second example is that after you simplify, you should always look to see if you can simplify again .

A secondary moral is, try to pull out the biggest perfect square you can. We could have jumped straight to the answer if we had begun by rewriting 180 as 36 5 .

This sort of simplification can sometimes allow you to combine radical terms, as in this example:

Combining radicals

75 size 12{ sqrt {"75"} } {} 12 size 12{ sqrt {"12"} } {}
= 5 3 size 12{ sqrt {3} } {} –2 3 size 12{ sqrt {3} } {} We found earlier that 75 size 12{ sqrt {"75"} } {} = 5 3 size 12{ sqrt {3} } {} . Use the same method to confirm that 12 size 12{ sqrt {"12"} } {} = 2 3 size 12{ sqrt {3} } {} .
= 3 3 size 12{ sqrt {3} } {} 5 of anything minus 2 of that same thing is 3 of it, right?
Got questions? Get instant answers now!

That last step may take a bit of thought. It can only be used when the radical is the same. Hence, 2 size 12{ sqrt {2} } {} + 3 size 12{ sqrt {3} } {} cannot be simplified at all. We were able to simplify 75 size 12{ sqrt {"75"} } {} 12 size 12{ sqrt {"12"} } {} only by making the radical in both cases the same .

So why does 5 3 size 12{ sqrt {3} } {} –2 3 size 12{ sqrt {3} } {} = 3 3 size 12{ sqrt {3} } {} ? It may be simplest to think about verbally: 5 of these things, minus 2 of the same things, is 3 of them. But you can look at it more formally as a factoring problem, if you see a common factor of 3 size 12{ sqrt {3} } {} .

5 3 size 12{ sqrt {3} } {} –2 3 size 12{ sqrt {3} } {} = 3 size 12{ sqrt {3} } {} ( 5 2 ) = 3 size 12{ sqrt {3} } {} ( 3 ) .

Of course, the process is exactly the same if variable are involved instead of just numbers!

Combining radicals with variables

x 3 2 + x 5 2
= x 3 + x 5 Remember the definition of fractional exponents!
= x 2 * x + x 4 * x As always, we simplify radicals by factoring them inside the root...
x 2 * x + x 4 * x and then breaking them up...
= x x + x 2 x and then taking square roots outside!
= ( x 2 + x ) x Now that the radical is the same, we can combine.
Got questions? Get instant answers now!

Rationalizing the denominator

It is always possible to express a fraction with no square roots in the denominator.

Is it always desirable? Some texts are religious about this point: “You should never have a square root in the denominator.” I have absolutely no idea why. To me, 1 2 size 12{ { {1} over { sqrt {2} } } } {} looks simpler than 2 2 size 12{ { { sqrt {2} } over {2} } } {} ; I see no overwhelming reason for forbidding the first or preferring the second.

However, there are times when it is useful to remove the radicals from the denominator: for instance, when adding fractions. The trick for doing this is based on the basic rule of fractions: if you multiply the top and bottom of a fraction by the same number, the fraction is unchanged. This rule enables us to say, for instance, that 2 3 size 12{ { {2} over {3} } } {} is exactly the same number as 2 3 3 3 size 12{ { {2 cdot 3} over {3 cdot 3} } } {} = 6 9 size 12{ { {6} over {9} } } {} .

In a case like 1 2 size 12{ { {1} over { sqrt {2} } } } {} , therefore, you can multiply the top and bottom by 2 size 12{ sqrt {2} } {} .

1 2 size 12{ { {1} over { sqrt {2} } } } {} = 1 * 2 2 * 2 = 2 2 size 12{ { { sqrt {2} } over {2} } } {}

What about a more complicated case, such as 12 1 + 3 size 12{ { { sqrt {"12"} } over {1+ sqrt {3} } } } {} ? You might think we could simplify this by multiplying the top and bottom by ( 1 + 3 size 12{ sqrt {3} } {} ), but that doesn’t work: the bottom turns into ( 1 + 3 ) 2 = 1 + 2 3 size 12{ sqrt {3} } {} + 3 , which is at least as ugly as what we had before.

The correct trick for getting rid of ( 1 + 3 size 12{ sqrt {3} } {} ) is to multiply it by ( 1 3 size 12{ sqrt {3} } {} ). These two expressions, identical except for the replacement of a+ by a- , are known as conjugates . What happens when we multiply them? We don’t need to use FOIL if we remember that

( x + y ) ( x - y ) = x 2 - y 2

Using this formula, we see that

( 1 + 3 ) ( 1 - 3 ) = 1 2 - ( 3 ) 2 = 1 - 3 = - 2

So the square root does indeed go away. We can use this to simplify the original expression as follows.

Rationalizing using the conjugate of the denominator

12 1 + 3 size 12{ { { sqrt {"12"} } over {1+ sqrt {3} } } } {} = 12 ( 1 - 3 ) ( 1 + 3 ) ( 1 - 3 ) = 12 - 36 1 - 3 = 2 3 - 6 -2 = - 3 + 3

Got questions? Get instant answers now!

As always, you may want to check this on your calculator. Both the original and the simplified expression are approximately 1.268.

Of course, the process is the same when variables are involved.

Rationalizing with variables

1 x x size 12{ { {1} over {x - sqrt {x} } } } {} = 1 x + x x x x + x size 12{ { {1 left (x+ sqrt {x} right )} over { left (x - sqrt {x} right ) left (x+ sqrt {x} right )} } } {} = x + x x 2 x size 12{ { {x+ sqrt {x} } over {x rSup { size 8{2} } - x} } } {}

Got questions? Get instant answers now!

Once again, we multiplied the top and the bottom by the conjugate of the denominator : that is, we replaced a- with a+ . The formula ( x + a ) ( x - a ) = x 2 - a 2 enabled us to quickly multiply the terms on the bottom, and eliminated the square roots in the denominator.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Advanced algebra ii: conceptual explanations. OpenStax CNX. May 04, 2010 Download for free at http://cnx.org/content/col10624/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Advanced algebra ii: conceptual explanations' conversation and receive update notifications?

Ask