<< Chapter < Page Chapter >> Page >
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. This chapter contains many examples of arithmetic techniques that are used directly or indirectly in algebra. Since the chapter is intended as a review, the problem-solving techniques are presented without being developed. Therefore, no work space is provided, nor does the chapter contain all of the pedagogical features of the text. As a review, this chapter can be assigned at the discretion of the instructor and can also be a valuable reference tool for the student.

Overview

  • Equivalent Fractions
  • Reducing Fractions To Lowest Terms
  • Raising Fractions To Higher Terms

Equivalent fractions

Equivalent fractions

Fractions that have the same value are called equivalent fractions.

For example, 2 3 and 4 6 represent the same part of a whole quantity and are therefore equivalent. Several more collections of equivalent fractions are listed below.

7 6 , 14 12 , 21 18 , 28 24 , 35 30

Got questions? Get instant answers now!

Reducing fractions to lowest terms

Reduced to lowest terms

It is often useful to convert one fraction to an equivalent fraction that has reduced values in the numerator and denominator. When a fraction is converted to an equivalent fraction that has the smallest numerator and denominator in the collection of equivalent fractions, it is said to be reduced to lowest terms. The conversion process is called reducing a fraction.

We can reduce a fraction to lowest terms by

  1. Expressing the numerator and denominator as a product of prime numbers. (Find the prime factorization of the numerator and denominator. See Section ( [link] ) for this technique.)
  2. Divide the numerator and denominator by all common factors. (This technique is commonly called “cancelling.”)

Sample set a

Reduce each fraction to lowest terms.

6 18 = 2 · 3 2 · 3 · 3 = 2 · 3 2 · 3 · 3 2 and 3 are common factors . = 1 3

Got questions? Get instant answers now!

16 20 = 2 · 2 · 2 · 2 2 · 2 · 5 = 2 · 2 · 2 · 2 2 · 2 · 5 2 is the only common factor . = 4 5

Got questions? Get instant answers now!

56 70 = 2 · 4 · 7 2 · 5 · 7 = 2 · 4 · 7 2 · 5 · 7 2 and 7 are common factors . = 4 5

Got questions? Get instant answers now!

8 15 = 2 · 2 · 2 3 · 5 There are no common factors . Thus , 8 15  is reduced to lowest terms .

Got questions? Get instant answers now!

Raising a fraction to higher terms

Equally important as reducing fractions is raising fractions to higher terms. Raising a fraction to higher terms is the process of constructing an equivalent fraction that has higher values in the numerator and denominator. The higher, equivalent fraction is constructed by multiplying the original fraction by 1.

Notice that 3 5 and 9 15 are equivalent, that is 3 5 = 9 15 . Also,

The product of three over five and one is equal to the product of three over five and three over three. This is equal to the product of three and three over the product of five and three, that in turn is equal to nine over fifteen. There is an arrow pointing towards one and three over three, indicating that one and three over three are equal.

This observation helps us suggest the following method for raising a fraction to higher terms.

Raising a fraction to higher terms

A fraction can be raised to higher terms by multiplying both the numerator and denominator by the same nonzero number.

For example, 3 4 can be raised to 24 32 by multiplying both the numerator and denominator by 8, that is, multiplying by 1 in the form 8 8 .

3 4 = 3 · 8 4 · 8 = 24 32

How did we know to choose 8 as the proper factor? Since we wish to convert 4 to 32 by multiplying it by some number, we know that 4 must be a factor of 32. This means that 4 divides into 32. In fact, 32 ÷ 4 = 8. We divided the original denominator into the new, specified denominator to obtain the proper factor for the multiplication.

Sample set b

Determine the missing numerator or denominator.

3 7 = ? 35 . Divide the original denominator ,  7 ,  into the new denominator , 35. 35 ÷ 7 = 5. Multiply the original numerator by 5 . 3 7 = 3 · 5 7 · 5 = 15 35

Got questions? Get instant answers now!

5 6 = 45 ? . Divide the original numerator ,  5 ,  into the new numerator , 45. 45 ÷ 5 = 9. Multiply the original denominator by 9 . 5 6 = 5 · 9 6 · 9 = 45 54

Got questions? Get instant answers now!

Exercises

For the following problems, reduce, if possible, each fraction lowest terms.

For the following problems, determine the missing numerator or denominator.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary algebra. OpenStax CNX. May 08, 2009 Download for free at http://cnx.org/content/col10614/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask