<< Chapter < Page Chapter >> Page >

. Xác định chỉ số cột pivot s :

c ¯ s = max c ¯ k > 0 c ¯ N size 12{ {overline {c}} rSub { size 8{s} } = "max"" " left lbrace {overline {c}} rSub { size 8{k} }>0 in {overline {c}} rSub { size 8{N} } right rbrace } {} = max 3 = 3 = c __ 2 size 12{ {}="max " left lbrace " 3 " right rbrace =3= {c} cSup { size 8{"__"} } rSub { size 8{2} } } {}

Vậy s=2

Ma trận cột s=2 trong ma trận N ¯ size 12{ {overline {N}} } {} - 1 3 1 righ N ¯ 2 = size 12{ {overline {N}} rSub { size 8{2} } =alignl { stack { left [" -"1 {} #right ] left [" 3" {} #right ] left [" 1" {} #righ]} } \[ \]} {}

. Xác định chỉ số dòng pivot r :

min b ¯ i N ˉ is = min b ¯ 2 N ¯ 22 , b ¯ 3 N ¯ 23 = min 3 3 , 5 1 = 1 = b ¯ 2 N ˉ 22 size 12{"min " left lbrace { { {overline {b}} rSub { size 8{i} } } over { { bar {N}} rSub { size 8{"is"} } } } right rbrace ="min " left lbrace { { {overline {b}} rSub { size 8{2} } } over { {overline {N}} rSub { size 8{"22"} } } } , { { {overline {b}} rSub { size 8{3} } } over { {overline {N}} rSub { size 8{"23"} } } } right rbrace ="min" left lbrace { {3} over {3} } , { {5} over {1} } right rbrace =1= { { {overline {b}} rSub { size 8{2} } } over { { bar {N}} rSub { size 8{"22"} } } } } {}

Vậy r = 2

e- Hoán vị

. Cột thứ s=2 trong ma trận N và cột thứ r=2 trong ma trận B

. Phần tử thứ s=2 trong c N T size 12{c rSub { size 8{N} } rSup { size 8{T} } } {} với phần tử thứ r=2 trong c B T size 12{c rSub { size 8{B} } rSup { size 8{T} } } {}

. Biến thứ s=2 trong x N T size 12{x rSub { size 8{N} } rSup { size 8{T} } } {} với biến thứ r=2 trong x B T size 12{x rSub { size 8{B} } rSup { size 8{T} } } {}

A = 1 1 1 0 0 0 2 1 1 0 0 2 1 0 1 A = 1 0 1 1 0 0 1 1 2 0 0 0 1 2 1 size 12{A= left [ matrix { 1 {} # - 1 {} # \lline {} # 1 {} # 0 {} # 0 {} ##0 {} # 2 {} # \lline {} # 1 {} # 1 {} # 0 {} ## 0 {} # 2 {} # \lline {} # - 1 {} # 0 {} # 1{}} right ] rightarrow A= left [ matrix {1 {} # 0 {} # \lline {} # 1 {} # - 1 {} # 0 {} ## 0 {} # 1 {} # \lline {} # 1 {} # 2 {} # 0 {} ##0 {} # 0 {} # \lline {} # - 1 {} # 2 {} # 1{} } right ]" "} {}

c T = 0 1 2 0 0 c T = 0 0 2 1 0 size 12{c rSup { size 8{T} } = left [ matrix { 0 {} # 1 {} # \lline {} # 2 {} # 0 {} # 0{}} right ]" " rightarrow " c" rSup { size 8{T} } = left [ matrix {0 {} # 0 {} # \lline {} # 2 {} # 1 {} # 0{} } right ]} {}

x T = x 3 x 2 x 1 x 4 x 5 x T = x 3 x 4 x 1 x 2 x 5 size 12{x rSup { size 8{T} } = left [ matrix { x rSub { size 8{3} } {} # x rSub { size 8{2} } {} # \lline {} # x rSub { size 8{1} } {} # x rSub { size 8{4} } {} # x rSub { size 8{5} } {}} right ] rightarrow " x" rSup { size 8{T} } = left [ matrix {x rSub { size 8{3} } {} # x rSub { size 8{4} } {} # \lline {} # x rSub { size 8{1} } {} # x rSub { size 8{2} } {} # x rSub { size 8{5} } {} } right ]} {}

f- Quay về bước a

Lần lặp 3

a. Tính ma trận nghịch đảo B-1

2 3 1 3 0 1 3 1 3 0 4 3 - 1 3 1 righ B = 1 -1 0 1 2 0 1 2 1 B 1 = size 12{B= left [ matrix { 1 {} # "-1" {} # 0 {} ##1 {} # 2 {} # 0 {} ## - 1 {} # 2 {} # 1{}} right ]" B" rSup { size 8{ - 1} } =alignl { stack {left [" " { {2} over {3} } " " { {1} over {3} } " 0" {} # right ]left [ - { {1} over {3} } " " { {1} over {3} } " 0" {} # right ]left [" " { {4} over {3} } " -" { {1} over {3} } " 1" {} # righ]} } \[ \] } {}

b- Tính các tham số

. Phương án cơ sở khả thi tốt hơn :

x 1 x 2 x 5 righ 2 3 1 3 0 1 3 1 3 0 4 3 - 1 3 1 righ [ ] 3 6 2 righ 4 1 4 righ x 3 x 4 righ 0 0 righ [ ] x B = x = size 12{x=alignl { stack { left [x rSub { size 8{B} } =alignl { stack {left [x rSub { size 8{1} } {} # right ]left [x rSub { size 8{2} } {} # right ]left [x rSub { size 8{5} } {} # righ]} } \[ \] =B rSup { size 8{ - 1} } b=alignl { stack {left [" " { {2} over {3} } " " { {1} over {3} } " 0" {} # right ]left [ - { {1} over {3} } " " { {1} over {3} } " 0" {} # right ]left [" " { {4} over {3} } " -" { {1} over {3} } " 1" {} # righ]} } \[ \] alignl { stack {left [3 {} # right ]left [6 {} # right ]left [2 {} # righ]} } \[ \] =alignl { stack {left [4 {} # right ]left [1 {} # right ]left [4 {} # righ]} } \[ \] = {overline {b}} {} #right ] left [x rSub { size 8{N} } =alignl { stack {left [x rSub { size 8{3} } {} # right ]left [x rSub { size 8{4} } {} # righ]} } \[ \] =alignl { stack {left [0 {} # right ]left [0 {} # righ]} } \[ \] {} #righ]} } \[ \]} {}

. Giá trị hàm mục tiêu :

z ( x ) = c B T x B = 2 1 0 4 1 4 = 9 size 12{z \( x \) =c rSub { size 8{B} } rSup { size 8{T} } x rSub { size 8{B} } = left [ matrix { 2 {} # 1 {} # 0{}} right ] left [ matrix {4 {} ## 1 {} ##4 } right ]=9} {} {}

. Tính ma trận :

2 3 1 3 0 1 3 1 3 0 4 3 - 1 3 1 righ 2 3 1 3 1 3 1 3 4 3 - 1 3 righ N __ = B 1 N = size 12{ {N} cSup { size 8{"__"} } =B rSup { size 8{ - 1} } N=alignl { stack { left [" " { {2} over {3} } " " { {1} over {3} } " 0" {} #right ] left [ - { {1} over {3} } " " { {1} over {3} } " 0" {} #right ] left [" " { {4} over {3} } " -" { {1} over {3} } " 1" {} #righ]} } \[ \]left [ matrix { " 1" {} # 0 {} ##" 0" {} # " 1" {} ## 0 {} # " 0"{}} right ]=alignl { stack {left [ { {2} over {3} } " " { {1} over {3} } {} # right ]left [ - { {1} over {3} } " " { {1} over {3} } {} # right ]left [ { {4} over {3} } " -" { {1} over {3} } {} # righ]} } \[ \] } {} {}

c- Xét dấu hiệu tối ưu :

c ¯ N T = c N T c B T N __ = 0 0 2 1 0 2 3 1 3 1 3 1 3 4 3 - 1 3 righ size 12{ {overline {c}} rSub { size 8{N} } rSup { size 8{T} } =c rSub { size 8{N} } rSup { size 8{T} } - c rSub { size 8{B} } rSup { size 8{T} } {N} cSup { size 8{"__"} } = left [ matrix { 0 {} # 0{}} right ] - left [2" 1 0" right ]alignl { stack { left [ { {2} over {3} } " " { {1} over {3} } {} #right ] left [ - { {1} over {3} } " " { {1} over {3} } {} #right ] left [ { {4} over {3} } " -" { {1} over {3} } {} #righ]} } \[ \]= left [ - 1" -1" right ]<0} {} : dừng

Vậy phương án tối ưu sẽ là :

x B = x 1 x 2 x 5 = 4 1 4 x N = x 3 x 4 = 0 0 { size 12{alignl { stack { left lbrace x rSub { size 8{B} } = left [ matrix {x rSub { size 8{1} } {} ## x rSub { size 8{2} } {} ##x rSub { size 8{5} } } right ]= left [ matrix { 4 {} ##1 {} ## 4} right ] {} #right none left lbrace x rSub { size 8{N} } = left [ matrix { x rSub { size 8{3} } {} ##x rSub { size 8{4} } } right ]= left [ matrix { 0 {} ##0 } right ]{} # right no } } lbrace } {}

Giá trị hàm mục tiêu là z(x) = 9 với x1 = 4 và x2 = 1

Chú ý trong trường hợp suy biến

Trong trường hợp bài toán suy biến, nghĩa là b ¯ r = 0 size 12{ {overline {b}} rSub { size 8{r} } =0} {} , ta có :

x s = b ¯ r a ¯ rs = 0 size 12{ {x} cSup { size 8{ and } } rSub { size 8{s} } = { { {overline {b}} rSub { size 8{r} } } over { {overline {a}} rSub { size 8{ ital "rs"} } } } =0} {}

cho nên giá trị của hàm mục tiêu không thay đổi khi thay đổi cơ sở, vì :

z ( x ) = z ( x ) + c ¯ s x s = z ( x ) size 12{z \( {x} cSup { size 8{ and } } \) =z \( x \) + {overline {c}} rSub { size 8{s} } {x} cSup { size 8{ and } } rSub { size 8{s} } =z \( x \) } {}

Vậy thì, có thể sau một số lần thay đổi cơ sở lại quay trở về cơ sở đã gặp và lặp như vậy một cách vô hạn. Người ta có nhiều cách để khắc phục hiện tượng này bằng cách xáo trộn một chút các dữ liệu của bài toán, sử dụng thủ tục từ vựng, quy tắc chọn pivot để tránh bị khử.

Giải thuật đơn hình cải tiến

Một cách tính ma trận nghịch đảo

Trong giải thuật đơn hình cơ bản hai ma trận kề B và B size 12{ {B} cSup { size 8{ and } } } {} chỉ khác nhau một cột vì vậy có thể tính ma trận nghịch đảo B 1 size 12{ {B} cSup { size 8{ and } } rSup { size 8{ - 1} } } {} một cách dễ dàng từ B-1 . Để làm điều đó chỉ cần nhân (bên trái) B-1 với một ma trận đổi cơ sở được xác định như sau :

μ = 1 0 . . a ¯ 1s a ¯ rs . . 0 0 1 . . a ¯ 2s a ¯ rs . . 0 . . . . . . . . . . . . 0 0 . . 1 a ¯ rs . . 0 . . . . . . . . . . . . 0 0 . . a ¯ ms a ¯ rs . . 1 dòng r côt r alignl { stack { size 12{μ= left [ matrix {1 {} # 0 {} # "." "." {} # { { - {overline {a}} rSub { size 8{"1s"} } } over { {overline {a}} rSub { size 8{"rs"} } } } {} # "." "." {} # 0 {} ## 0 {} # 1 {} # "." "." {} # { { - {overline {a}} rSub { size 8{"2s"} } } over { {overline {a}} rSub { size 8{"rs"} } } } {} # "." "." {} # 0 {} ##"." "." {} # "." "." {} # "." "." {} # "." "." {} # "." "." {} # "." "." {} ## 0 {} # 0 {} # "." "." {} # { {1} over { {overline {a}} rSub { size 8{"rs"} } } } {} # "." "." {} # 0 {} ##"." "." {} # "." "." {} # "." "." {} # "." "." {} # "." "." {} # "." "." {} ## 0 {} # 0 {} # "." "." {} # { { - {overline {a}} rSub { size 8{"ms"} } } over { {overline {a}} rSub { size 8{"rs"} } } } {} # "." "." {} # 1{}} right ] matrix {{} ## rightarrow " dòng r"} } {} # " " uparrow " côt r" {}} } {}

Khi đó :

B ˆ 1 = μB 1 size 12{ {B} cSup { size 8{ widehat } } rSup { size 8{ - 1} } =μB rSup { size 8{ - 1} } } {}

Ta thấy rằng ma trận đổi cơ sở  được thiết lập giống như một ma trận đơn vị mxm, trong đó cột r có các thành phần được xác định như sau :

a ¯ is a ¯ rs size 12{ { { - {overline {a}} rSub { size 8{ ital "is"} } } over { {overline {a}} rSub { size 8{ ital "rs"} } } } } {} : đối với thành phần i  r.

1 a ¯ rs size 12{ { {1} over { {overline {a}} rSub { size 8{ ital "rs"} } } } } {} : đối với thành phần r .

Khi mà ma trận cở sở xuất phát là ma trận đơn vị, sau một số bước đổi cơ sở B0 B1 B2 ....... Bq tương ứng với các ma trận đổi cơ sở 0 1 2 .…...q-1 người ta có cách tính ma trận nghịch đảo như sau :

B q 1 = μ 0 . μ 1 . . . . . . . μ q 1 size 12{ left [B rSup { size 8{q} } right ] rSup { size 8{ - 1} } =μ rSup { size 8{0} } "." μ rSup { size 8{1} } "." "." "." "." "." "." "." μ rSup { size 8{q - 1} } } {}

Quy hoạch tuyến tính dạng chuẩn

Quy hoạch tuyến tính dạng chuẩn là quy hoạch tuyến tính chính tắc mà trong đó có thể rút ra một ma trận cơ sở là ma trận đơn vị. Quy hoạch tuyến tính chuẩn có dạng :

min/max z ( x ) = c T x [ I N ] x = b x 0 { alignl { stack { size 12{"min/max"" "z \( x \) =c rSup { size 8{T} } x} {} #alignl { stack { left lbrace \[ I" N" \]x=b {} # right none left lbrace x>= 0 {} # right no } } lbrace {}} } {}

Giải thuật đơn hình cải tiến

Từ những kết quả trên người ta xây dựng giải thuật đơn hình cải tiến đối với bài toán qui hoạch tuyến tính (max) dạng chuẩn như sau :

a- Khởi tạo

A ¯ 0 = A size 12{ {overline {A}} rSub { size 8{0} } =A} {}

b ¯ 0 = b size 12{ {overline {b}} rSub { size 8{0} } =b} {}

b- Thực hiện bước lặp với k = 0,1,2, ...

. Xác định phương án cơ sở khả thi :

x B k = b ¯ k x N k = 0 righ x k = size 12{x rSup { size 8{k} } =alignl { stack { left [x rSub { size 8{B rSub { size 6{k} } } } = {overline {b}} rSub {k} {} #right ] left [ size 12{x rSub {N rSub { size 6{k} } } size 12{ {}=0}} {} #righ]} } size 12{ \[ \]}} {}

. Tính giá trị hàm mục tiêu :

z ( x k ) = c B k T x B k = c B k T b ¯ k size 12{z \( x rSup { size 8{k} } \) =c rSub { size 8{B rSub { size 6{k} } } } rSup {T} size 12{x rSub {B rSub { size 6{k} } } } size 12{ {}=c rSub {B rSub { size 6{k} } } rSup {T} {overline { size 12{b} }} rSub {k} }} {}

. Xét dấu hiệu tối ưu :

c ¯ k T = c T c B k T A ¯ k size 12{ {overline {c}} rSub { size 8{k} } rSup { size 8{T} } =c rSup { size 8{T} } - c rSub { size 8{B rSub { size 6{k} } } } rSup {T} {overline { size 12{A} }} rSub {k} } {}

- Nếu c ¯ k T 0 size 12{ {overline {c}} rSub { size 8{k} } rSup { size 8{T} }<= 0} {} thì giải thuật dừng và :

x B k = b ¯ k x N k = 0 righ x k = size 12{x rSup { size 8{k} } =alignl { stack { left [x rSub { size 8{B rSub { size 6{k} } } } = {overline {b}} rSub {k} {} #right ] left [ size 12{x rSub {N rSub { size 6{k} } } size 12{ {}=0}} {} #righ]} } size 12{ \[ \]}} {} là phương án tối ưu

z ( x k ) = c B k T x B k = c B k T b ¯ k size 12{z \( x rSup { size 8{k} } \) =c rSub { size 8{B rSub { size 6{k} } } } rSup {T} size 12{x rSub {B rSub { size 6{k} } } } size 12{ {}=c rSub {B rSub { size 6{k} } } rSup {T} {overline { size 12{b} }} rSub {k} }} {} là giá trị hàm mục tiêu

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Quy hoạch tuyến tính. OpenStax CNX. Aug 08, 2009 Download for free at http://cnx.org/content/col10903/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Quy hoạch tuyến tính' conversation and receive update notifications?

Ask