Quantum gravity is important in those situations where gravity is so extremely strong that it has effects on the quantum scale, where the other forces are ordinarily much stronger. The early universe was such a place, but black holes are another. The first significant connection between gravity and quantum effects was made by the Russian physicist Yakov Zel’dovich in 1971, and other significant advances followed from the British physicist Stephen Hawking. (See
[link] .) These two showed that black holes could radiate away energy by quantum effects just outside the event horizon (nothing can escape from inside the event horizon). Black holes are, thus, expected to radiate energy and shrink to nothing, although extremely slowly for most black holes. The mechanism is the creation of a particle-antiparticle pair from energy in the extremely strong gravitational field near the event horizon. One member of the pair falls into the hole and the other escapes, conserving momentum. (See
[link] .) When a black hole loses energy and, hence, rest mass, its event horizon shrinks, creating an even greater gravitational field. This increases the rate of pair production so that the process grows exponentially until the black hole is nuclear in size. A final burst of particles and
$\gamma $ rays ensues. This is an extremely slow process for black holes about the mass of the Sun (produced by supernovas) or larger ones (like those thought to be at galactic centers), taking on the order of
${\text{10}}^{\text{67}}$ years or longer! Smaller black holes would evaporate faster, but they are only speculated to exist as remnants of the Big Bang. Searches for characteristic
$\gamma $ -ray bursts have produced events attributable to more mundane objects like neutron stars accreting matter.

Questions & Answers

A soccer player kicked off a ball at velocity of 62 ft/s at angle 45°. A goal keeper is 43 yard away from the direction in which ball kicked off. At what minimum velocity he runs to meet the ball?

A soccer player kicked off the ball at the velocity of 62 ft/s at 45° with horizontal.A goal keeper is 43 yard away from the ball kicked position.At what minimum velocity he runs to meet the ball?

how do we calculate weight and eara eg an elefant that weight 2000kg has four fits or legs search of surface eara is 0.1m2(1metre square) incontact with the ground=10m2(g =10m2)

Cruz

P=F/A

Mira

can someone derive the formula a little bit deeper?