Page 1 / 1

The least squares optimal filter design problem is quadratic in the filter coefficients: $(\epsilon ^{2})={r}_{\mathrm{dd}}(0)-2P^TW+W^TRW$ If $R$ is positive definite, the error surface $(\epsilon ^{2})\left({w}_{0},{w}_{1},\dots ,{w}_{M-1}\right)$ is a unimodal "bowl" in $ℝ^{N}$ .

The problem is to find the bottom of the bowl. In an adaptive filter context, the shape and bottom of the bowl maydrift slowly with time; hopefully slow enough that the adaptive algorithm can track it.

For a quadratic error surface, the bottom of the bowl can be found in one step by computing $R^{(-1)}P$ . Most modern nonlinear optimization methods (which are used, for example, to solve the $L^{P}$ optimal IIR filter design problem!) locally approximate a nonlinear function with a second-order(quadratic) Taylor series approximation and step to the bottom of this quadratic approximation on each iteration. However, anolder and simpler appraoch to nonlinear optimaztion exists, based on gradient descent .

The idea is to iteratively find the minimizer by computingthe gradient of the error function: $E\nabla =\frac{\partial^{1}(\epsilon ^{2})}{\partial {w}_{i}}$ . The gradient is a vector in $ℝ^{M}$ pointing in the steepest uphill direction on the error surface at a given point $W^{i}$ , with $\nabla$ having a magnitude proportional to the slope of the error surface inthis steepest direction.

By updating the coefficient vector by taking a step opposite the gradient direction : $W^{(i+1)}=W^{i}-\mu \nabla ^{i}$ , we go (locally) "downhill" in the steepest direction, which seems to be a sensible way to iterativelysolve a nonlinear optimization problem. The performance obviously depends on $\mu$ ; if $\mu$ is too large, the iterations could bounce back and forth up out of thebowl. However, if $\mu$ is too small, it could take many iterations to approach thebottom. We will determine criteria for choosing $\mu$ later.

In summary, the gradient descent algorithm for solving the Weiner filter problem is: $\nabla ^{i}=-(2P)+2RW^{i}$ $W^{(i+1)}=W^{i}-\mu \nabla ^{i}$ $\text{repeat}$ ${W}_{\mathrm{opt}}=W^{}$ The gradient descent idea is used in the LMS adaptive fitleralgorithm. As presented, this alogrithm costs $O(M^{2})$ computations per iteration and doesn't appear very attractive, but LMS only requires $O(M)$ computations and is stable, so it is very attractive when computation is an issue, even thought it converges moreslowly then the RLS algorithms we have discussed so far.

where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!