# 4.1 Triangle geometry

 Page 1 / 1

## Proportion

Two line segments are divided in the same proportion if the ratios between their parts are equal.

$\frac{AB}{BC}=\frac{x}{y}=\frac{kx}{ky}=\frac{DE}{EF}$
$\therefore \text{the}\phantom{\rule{4.pt}{0ex}}\text{line}\phantom{\rule{4.pt}{0ex}}\text{segments}\phantom{\rule{4.pt}{0ex}}\text{are}\phantom{\rule{4.pt}{0ex}}\text{in}\phantom{\rule{4.pt}{0ex}}\text{the}\phantom{\rule{4.pt}{0ex}}\text{same}\phantom{\rule{4.pt}{0ex}}\text{proportion}$

If the line segments are proportional, the following also hold

1. $\frac{CB}{AC}=\frac{FE}{DF}$
2. $AC·FE=CB·DF$
3. $\frac{AB}{BC}=\frac{DE}{FE}$ and $\frac{BC}{AB}=\frac{FE}{DE}$
4. $\frac{AB}{AC}=\frac{DE}{DF}$ and $\frac{AC}{AB}=\frac{DF}{DE}$

## Proportionality of triangles

Triangles with equal heights have areas which are in the same proportion to each other as the bases of the triangles.

$\begin{array}{ccc}\hfill {h}_{1}& =& {h}_{2}\hfill \\ \hfill \therefore \frac{\text{area}\phantom{\rule{4.pt}{0ex}}▵ABC}{\text{area}\phantom{\rule{4.pt}{0ex}}▵DEF}& =& \frac{\frac{1}{2}BC×{h}_{1}}{\frac{1}{2}EF×{h}_{2}}=\frac{BC}{EF}\hfill \end{array}$

• A special case of this happens when the bases of the triangles are equal: Triangles with equal bases between the same parallel lines have the same area.
$\text{area}\phantom{\rule{4.pt}{0ex}}▵ABC=\frac{1}{2}·h·BC=\phantom{\rule{4.pt}{0ex}}\text{area}\phantom{\rule{4.pt}{0ex}}▵DBC$
• Triangles on the same side of the same base, with equal areas, lie between parallel lines.
$\text{If}\phantom{\rule{4.pt}{0ex}}\text{area}\phantom{\rule{4.pt}{0ex}}▵\phantom{\rule{4.pt}{0ex}}\text{ABC}\phantom{\rule{4.pt}{0ex}}\text{=}\phantom{\rule{4.pt}{0ex}}\text{area}\phantom{\rule{4.pt}{0ex}}▵\phantom{\rule{4.pt}{0ex}}\text{BDC,}$
$\text{then}\phantom{\rule{4.pt}{0ex}}\text{AD}\phantom{\rule{4.pt}{0ex}}\parallel \phantom{\rule{4.pt}{0ex}}\text{BC.}$

Theorem 1 Proportion Theorem: A line drawn parallel to one side of a triangle divides the other two sides proportionally.

Given : $▵$ ABC with line DE $\parallel$ BC

R.T.P. :

$\frac{AD}{DB}=\frac{AE}{EC}$

Proof : Draw ${h}_{1}$ from E perpendicular to AD, and ${h}_{2}$ from D perpendicular to AE.

Draw BE and CD.

$\begin{array}{ccc}\hfill \frac{\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{ADE}}{\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{BDE}}& =& \frac{\frac{1}{2}AD·{h}_{1}}{\frac{1}{2}DB·{h}_{1}}=\frac{AD}{DB}\hfill \\ \hfill \frac{\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{ADE}}{\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{CED}}& =& \frac{\frac{1}{2}AE·{h}_{2}}{\frac{1}{2}EC·{h}_{2}}=\frac{AE}{EC}\hfill \\ \hfill \text{but}\phantom{\rule{4.pt}{0ex}}\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{BDE}\phantom{\rule{4.pt}{0ex}}& =& \phantom{\rule{4.pt}{0ex}}\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{CED}\phantom{\rule{4.pt}{0ex}}\text{(equal}\phantom{\rule{4.pt}{0ex}}\text{base}\phantom{\rule{4.pt}{0ex}}\text{and}\phantom{\rule{4.pt}{0ex}}\text{height)}\hfill \\ \hfill \therefore \frac{\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{ADE}}{\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{BDE}}& =& \frac{\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{ADE}}{\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{CED}}\hfill \\ \hfill \therefore \frac{AD}{DB}& =& \frac{AE}{EC}\hfill \\ \hfill \therefore \text{DE}\phantom{\rule{4.pt}{0ex}}\text{divides}\phantom{\rule{4.pt}{0ex}}\text{AB}\phantom{\rule{4.pt}{0ex}}\text{and}\phantom{\rule{4.pt}{0ex}}\text{AC}\phantom{\rule{4.pt}{0ex}}\text{proportionally.}\end{array}$

Similarly,

$\begin{array}{ccc}\hfill \frac{AD}{AB}& =& \frac{AE}{AC}\hfill \\ \hfill \frac{AB}{BD}& =& \frac{AC}{CE}\hfill \end{array}$

Following from Theorem  "Proportion" , we can prove the midpoint theorem.

Theorem 2 Midpoint Theorem: A line joining the midpoints of two sides of a triangle is parallel to the third side and equal to half the length of the third side.

Proof : This is a special case of the Proportionality Theorem (Theorem "Proportion" ). If AB = BD and AC = AE,and AD = AB + BD = 2ABAE = AC + CB = 2AC then DE $\parallel$ BC and BC = 2DE.

Theorem 3 Similarity Theorem 1: Equiangular triangles have their sides in proportion and are therefore similar.

Given : $▵$ ABC and $▵$ DEF with $\stackrel{^}{A}=\stackrel{^}{D}$ ; $\stackrel{^}{B}=\stackrel{^}{E}$ ; $\stackrel{^}{C}=\stackrel{^}{F}$

R.T.P. :

$\frac{AB}{DE}=\frac{AC}{DF}$

Construct: G on AB, so that AG = DE, H on AC, so that AH = DF

Proof : In $▵$ 's AGH and DEF

$\begin{array}{cccc}\hfill \mathrm{AG}& =& \mathrm{DE}\hfill & \mathrm{\left(const.\right)}\\ \hfill \mathrm{AH}& =& D\hfill & \left(\mathrm{const.}\right)\\ \hfill \stackrel{^}{A}& =& \stackrel{^}{D}\hfill & \left(\mathrm{given}\right)\\ \hfill \therefore \phantom{\rule{3pt}{0ex}}▵\mathrm{AGH}& \equiv & ▵\mathrm{DEF}\hfill & \left(\mathrm{SAS}\right)\\ \hfill \therefore \phantom{\rule{3pt}{0ex}}A\stackrel{^}{G}H& =& \stackrel{^}{E}=\stackrel{^}{B}\hfill & \\ \therefore \phantom{\rule{3pt}{0ex}}GH\hfill & \parallel & \mathrm{BC}\hfill & \left(\mathrm{corres.}\angle \mathrm{\text{'}s equal}\right)\\ \hfill \therefore \phantom{\rule{3pt}{0ex}}\frac{\mathrm{AG}}{\mathrm{AB}}& =& \frac{AH}{AC}\hfill & \left(\mathrm{proportion theorem}\right)\\ \hfill \therefore \phantom{\rule{3pt}{0ex}}\frac{\mathrm{DE}}{\mathrm{AB}}& =& \frac{DF}{AC}\hfill & \left(\mathrm{AG}=\mathrm{DE};\mathrm{AH}=\mathrm{DF}\right)\\ \hfill \therefore \phantom{\rule{3pt}{0ex}}▵\mathrm{ABC}& |||& ▵\mathrm{DEF}\hfill \end{array}$
$|||$ means “is similar to"

Theorem 4 Similarity Theorem 2: Triangles with sides in proportion are equiangular and therefore similar.

Given : $▵$ ABC with line DE such that

$\frac{AD}{DB}=\frac{AE}{EC}$

R.T.P. : $DE\parallel BC$ ; $▵$ ADE $|||$ $▵$ ABC

Proof : Draw ${h}_{1}$ from E perpendicular to AD, and ${h}_{2}$ from D perpendicular to AE.

Draw BE and CD.

$\begin{array}{ccc}\hfill \frac{\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{ADE}}{\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{BDE}}& =& \frac{\frac{1}{2}AD·{h}_{1}}{\frac{1}{2}DB·{h}_{1}}=\frac{AD}{DB}\hfill \\ \hfill \frac{\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{ADE}}{\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{CED}}& =& \frac{\frac{1}{2}AE·{h}_{2}}{\frac{1}{2}EC·{h}_{2}}=\frac{AE}{EC}\hfill \\ \hfill \text{but}\phantom{\rule{4.pt}{0ex}}\frac{AD}{DB}& =& \frac{AE}{EC}\phantom{\rule{4.pt}{0ex}}\text{(given)}\hfill \\ \hfill \therefore \frac{\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{ADE}}{\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{BDE}}& =& \frac{\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{ADE}}{\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{CED}}\hfill \\ \hfill \therefore \text{area}\phantom{\rule{4.pt}{0ex}}▵\text{BDE}\phantom{\rule{4.pt}{0ex}}& =& \phantom{\rule{4.pt}{0ex}}\text{area}\phantom{\rule{4.pt}{0ex}}▵\text{CED}\hfill \\ \hfill \therefore DE\parallel BC& & \phantom{\rule{4.pt}{0ex}}\text{(same}\phantom{\rule{4.pt}{0ex}}\text{side}\phantom{\rule{4.pt}{0ex}}\text{of}\phantom{\rule{4.pt}{0ex}}\text{equal}\phantom{\rule{4.pt}{0ex}}\text{base}\phantom{\rule{4.pt}{0ex}}\text{DE,}\phantom{\rule{4.pt}{0ex}}\text{same}\phantom{\rule{4.pt}{0ex}}\text{area)}\hfill \\ \hfill \therefore A\stackrel{^}{D}E& =& A\stackrel{^}{B}C\phantom{\rule{4.pt}{0ex}}\text{(corres}\phantom{\rule{4.pt}{0ex}}\angle \text{'s)}\hfill \\ \hfill \text{and}\phantom{\rule{4.pt}{0ex}}A\stackrel{^}{E}D& =& A\stackrel{^}{C}B\hfill \end{array}$
$\therefore ▵\text{ADE}\phantom{\rule{4.pt}{0ex}}\text{and}\phantom{\rule{4.pt}{0ex}}▵\text{ABC}\phantom{\rule{4.pt}{0ex}}\text{are}\phantom{\rule{4.pt}{0ex}}\text{equiangular}$
$\therefore ▵ADE\phantom{\rule{0.277778em}{0ex}}|||\phantom{\rule{0.277778em}{0ex}}▵ABC\phantom{\rule{4.pt}{0ex}}\text{(AAA)}$

Theorem 5 Pythagoras' Theorem: The square on the hypotenuse of a right angled triangle is equal to the sum of the squares on the other two sides.

Given : $▵$ ABC with $\stackrel{^}{A}={90}^{\circ }$

Required to prove : $B{C}^{2}=A{B}^{2}+A{C}^{2}$

Proof :

$\begin{array}{ccc}\hfill \mathrm{Let}\phantom{\rule{3pt}{0ex}}\stackrel{^}{C}& =& x\hfill \\ \hfill \therefore \phantom{\rule{3pt}{0ex}}D\stackrel{^}{A}C& =& {90}^{\circ }-x\phantom{\rule{3pt}{0ex}}\left(\angle \mathrm{\text{'}s of a}\phantom{\rule{2pt}{0ex}}▵\right)\hfill \\ \hfill \therefore \phantom{\rule{3pt}{0ex}}D\stackrel{^}{A}B& =& x\hfill \\ \hfill A\stackrel{^}{B}D& =& {90}^{\circ }-x\phantom{\rule{3pt}{0ex}}\left(\angle \mathrm{\text{'}s of a}\phantom{\rule{2pt}{0ex}}▵\right)\hfill \\ \hfill B\stackrel{^}{D}A& =& C\stackrel{^}{D}A=\stackrel{^}{A}={90}^{\circ }\hfill \end{array}$
$\therefore ▵\mathrm{ABD}|||▵\mathrm{CBA}\phantom{\rule{3pt}{0ex}}\mathrm{and}▵\mathrm{CAD}|||▵\mathrm{CBA}\left(\mathrm{AAA}\right)$
$\therefore \frac{AB}{CB}=\frac{BD}{BA}=\left(\frac{AD}{CA}\right)\mathrm{and}\frac{CA}{CB}=\frac{CD}{CA}=\left(\frac{AD}{BA}\right)$
$\therefore A{B}^{2}=CB×BD\phantom{\rule{3pt}{0ex}}\mathrm{and}\phantom{\rule{3pt}{0ex}}A{C}^{2}=CB×CD$
$\begin{array}{ccc}\hfill \therefore A{B}^{2}+A{C}^{2}& =& CB\left(BD+CD\right)\hfill \\ & =& CB\left(CB\right)\hfill \\ & =& C{B}^{2}\hfill \\ \hfill \mathrm{i}.\mathrm{e}.B{C}^{2}& =& A{B}^{2}+A{C}^{2}\hfill \end{array}$

In $▵$ GHI, GH $\parallel$ LJ; GJ $\parallel$ LK and $\frac{JK}{KI}$ = $\frac{5}{3}$ . Determine $\frac{HJ}{KI}$ .

1. $\begin{array}{ccc}\hfill L\stackrel{^}{I}J& =& G\stackrel{^}{I}H\hfill \\ \hfill J\stackrel{^}{L}I& =& H\stackrel{^}{G}I\left(\mathrm{Corres}.\angle \mathrm{s}\right)\hfill \\ \hfill \therefore ▵LIJ& |||& ▵GIH\left(\mathrm{Equiangular}▵\mathrm{s}\right)\hfill \end{array}$
$\begin{array}{ccc}\hfill L\stackrel{^}{I}K& =& G\stackrel{^}{I}J\hfill \\ \hfill K\stackrel{^}{L}I& =& J\stackrel{^}{G}I\left(\mathrm{Corres}.\angle \mathrm{s}\right)\hfill \\ \hfill \therefore ▵LIK& |||& ▵GIJ\left(\mathrm{Equiangular}▵\mathrm{s}\right)\hfill \end{array}$
2. $\begin{array}{ccc}\hfill \frac{HJ}{JI}& =& \frac{GL}{LI}\left(▵LIJ\phantom{\rule{0.277778em}{0ex}}|||\phantom{\rule{0.277778em}{0ex}}▵GIH\right)\hfill \\ \hfill \text{and}\phantom{\rule{4.pt}{0ex}}\frac{GL}{LI}& =& \frac{JK}{KI}\left(▵LIK\phantom{\rule{0.277778em}{0ex}}|||\phantom{\rule{0.277778em}{0ex}}▵GIJ\right)\hfill \\ & =& \frac{5}{3}\hfill \\ \hfill \therefore \frac{HJ}{JI}& =& \frac{5}{3}\hfill \end{array}$
3. $\begin{array}{ccc}\hfill \frac{HJ}{KI}& =& \frac{HJ}{JI}×\frac{JI}{KI}\hfill \end{array}$

We need to calculate $\frac{JI}{KI}$ : We were given $\frac{JK}{KI}=\frac{5}{3}$ So rearranging, we have $JK=\frac{5}{3}KI$ And:

$\begin{array}{ccc}\hfill JI& =& JK+KI\hfill \\ & =& \frac{5}{3}KI+KI\hfill \\ & =& \frac{8}{3}KI\hfill \\ \hfill \frac{JI}{KI}& =& \frac{8}{3}\hfill \end{array}$

Using this relation:

$\begin{array}{ccc}& =& \frac{5}{3}×\frac{8}{3}\hfill \\ & =& \frac{40}{9}\hfill \end{array}$

PQRS is a trapezium, with PQ $\parallel$ RS. Prove that PT $·$ TR = ST $·$ TQ.

1. $\begin{array}{ccc}\hfill \stackrel{^}{{P}_{1}}& =& \stackrel{^}{{S}_{1}}\left(\mathrm{Alt}.\angle \mathrm{s}\right)\hfill \\ \hfill \stackrel{^}{{Q}_{1}}& =& \stackrel{^}{{R}_{1}}\left(\mathrm{Alt}.\angle \mathrm{s}\right)\hfill \\ \hfill \therefore ▵PTQ& |||& ▵STR\left(\mathrm{Equiangular}▵\mathrm{s}\right)\hfill \end{array}$
2. $\begin{array}{ccc}\hfill \frac{PT}{TQ}& =& \frac{ST}{TR}\left(▵PTQ|||▵STR\right)\hfill \\ \hfill \therefore PT·TR& =& ST·TQ\hfill \end{array}$

## Triangle geometry

1. Calculate SV
2. $\frac{CB}{YB}=\frac{3}{2}$ . Find $\frac{DS}{SB}$ .
3. Given the following figure with the following lengths, find AE, EC and BE. BC = 15 cm, AB = 4 cm, CD = 18 cm, and ED = 9 cm.
4. Using the following figure and lengths, find IJ and KJ. HI = 26 m, KL = 13 m, JL = 9 m and HJ = 32 m.
5. Find FH in the following figure.
6. BF = 25 m, AB = 13 m, AD = 9 m, DF = 18m. Calculate the lengths of BC, CF, CD, CE and EF, and find the ratio $\frac{DE}{AC}$ .
7. If LM $\parallel$ JK, calculate $y$ .

#### Questions & Answers

how does economics define me
what are the factors that determines the demand and supply
sillah
what are the importance of Economics
tell me something very important about economics..
how may I solve arithmetic mean ,,,all example
what is agriculture
simple method of understanding cost concept
what is inflation
Inflation is a general increase in price levels
Zuko
is the action of inflating something
Abdifatah
inflation is the persistent increase in general price level of goods and services in an economy over a considerable period of time .
Tetteh
inflation is the general increase of a commodity in a particular period of time.
Turay
inflation is a general increase in price levels of commodities
shehu
what are the types of inflation?
Ebrima
inflation is the period of persistent rise in the general level of the price of goods services over time
Emmanuel
we have creeping inflation, demand pull inflation ,cost push inflation, and galloping inflation .
Emmanuel
how can a location of a firm create difference between producers
what is monetary policy
joy
hello
Abdifatah
is a monetary from policy that's authorized of country encharces
Abdifatah
What would you say about the the mobility of enterprise as a factor of production?
how can I connect myself to this Ambrose platform
I am good and you I am from sierra Leone and I am new her
u are welcome bro, here is a good platform for you to be
Alie
That i know,thanks bro.
what the main definition of economic
the main definition is given by prof Lionel Robbins as a social science which studies human behavior between ends and scarce which have alternative uses
olajumoke
what covers macro economics.
Fayaz
what is economics
what do you mean by means in economics
Julie
economic is the wealth of a country.
Moussa
monetary policy is refer to as being expansionary or contractionary.
Abdul
pls who can help me to explain money market and capital market
Au
money market is base on short term loan which is within one year period while capital market is long term loan more than one year...
money market is a market were short term loans are dealt with while capital market is a market were long term loans are traded
Ebrima
What is mean by monetory policy
Lovely
monetary polices are rules that control the rate of monetary exchange in an economic as a whole.
Ebrima
wealth of the nation
Uhara
important of unemployment
Important of unemployed
Otwe
important?
Aneela
While the American heart association suggests that meditation might be used in conjunction with more traditional treatments as a way to manage hypertension
in a comparison of the stages of meiosis to the stage of mitosis, which stages are unique to meiosis and which stages have the same event in botg meiosis and mitosis
Other chapter Q/A we can ask