# 5.1 Lab 5: ctft and its applications

 Page 1 / 4

## Properties of ctft

The example covered in this section provides an implementation of CTFT and its properties. As mentioned earlier, programming environments can generate and work with only discrete values arranged in arrays. Thus, to get a continuous-time representation of a signal, use a very small value of time increment dt. For example, dt=0.001 means there are 1000 discrete samples in 1 second, which provides a good approximation to represent a low-frequency signal. However, when working with very high-frequency signals, one should decrease the value of dt further to ensure there are enough samples to represent the signal in a continuous fashion over a specified duration.

[link] shows the example of the completed block diagram for the CTFT (or FT) and its properties. This particular VI is capable of finding the FT of a rectangular and a triangular pulse. Create two input signals using the LabVIEW MathScript functions ones and zeros, which are combined in the time domain. Use a case structure to select the combination method (linear combination, convolution or multiplication) and the parameter mode1 to serve as an input that is connected to an Enum Control (Controls Modern Ring&Enum Enum) . Use parameters mode3 and mode4, which are connected to two Enum controls, to select the input signal type. Also set Pulse width, Time shift and Time scale as control parameters. Pulse width controls the number of ones in the pulse, which is used to increase or decrease the pulse width. Time shift adds zeros before the pulse to provide a time delay. Time scale is set to be multiplied with the time increment (dt) to ensure appropriate scaling of the pulse. Use the LabVIEW MathScript function `fft` to determine the FT of the continuous signal. Combine the signals in the frequency domain and control the combination method (linear combination, convolution or multiplication) via the parameter mode2. Compute the FT of the time domain combinations and the inverse FT of the frequency domain combinations using the functions `fft` and `ifft` . To shift the zero-frequency component to the center of the spectrum, use the LabVIEW MathScript function `fftshift` . Finally, determine the magnitude and phase of the FT using the functions `abs` and `angle` , respectively. Display the input signals and their combinations using a Build Waveform function (Functions → Programming Waveforms Build Waveforms) and a W aveform G raph (Controls Modern Graph Waveform Graph) . Also, display the spectrum magnitude and phase using a waveform graph.

[link] and [link] shows the front panel of the above system. Use controls named Pulse width, Time shift and Time scaling to change the waveforms in the time domain. Three waveform graphs for Input signal, Magnitude of FT and Phase of FT also appear in the front panel shown. With the specified front panel controls, one can easily verify CTFT properties. To begin with, run the program in continuous mode using the Run Continuously button.

where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
Got questions? Join the online conversation and get instant answers!