<< Chapter < Page Chapter >> Page >

Properties of ctft

The example covered in this section provides an implementation of CTFT and its properties. As mentioned earlier, programming environments can generate and work with only discrete values arranged in arrays. Thus, to get a continuous-time representation of a signal, use a very small value of time increment dt. For example, dt=0.001 means there are 1000 discrete samples in 1 second, which provides a good approximation to represent a low-frequency signal. However, when working with very high-frequency signals, one should decrease the value of dt further to ensure there are enough samples to represent the signal in a continuous fashion over a specified duration.

[link] shows the example of the completed block diagram for the CTFT (or FT) and its properties. This particular VI is capable of finding the FT of a rectangular and a triangular pulse. Create two input signals using the LabVIEW MathScript functions ones and zeros, which are combined in the time domain. Use a case structure to select the combination method (linear combination, convolution or multiplication) and the parameter mode1 to serve as an input that is connected to an Enum Control (Controls Modern Ring&Enum Enum) . Use parameters mode3 and mode4, which are connected to two Enum controls, to select the input signal type. Also set Pulse width, Time shift and Time scale as control parameters. Pulse width controls the number of ones in the pulse, which is used to increase or decrease the pulse width. Time shift adds zeros before the pulse to provide a time delay. Time scale is set to be multiplied with the time increment (dt) to ensure appropriate scaling of the pulse. Use the LabVIEW MathScript function fft to determine the FT of the continuous signal. Combine the signals in the frequency domain and control the combination method (linear combination, convolution or multiplication) via the parameter mode2. Compute the FT of the time domain combinations and the inverse FT of the frequency domain combinations using the functions fft and ifft . To shift the zero-frequency component to the center of the spectrum, use the LabVIEW MathScript function fftshift . Finally, determine the magnitude and phase of the FT using the functions abs and angle , respectively. Display the input signals and their combinations using a Build Waveform function (Functions → Programming Waveforms Build Waveforms) and a W aveform G raph (Controls Modern Graph Waveform Graph) . Also, display the spectrum magnitude and phase using a waveform graph.

Block Diagram of CTFT and Its Properties

[link] and [link] shows the front panel of the above system. Use controls named Pulse width, Time shift and Time scaling to change the waveforms in the time domain. Three waveform graphs for Input signal, Magnitude of FT and Phase of FT also appear in the front panel shown. With the specified front panel controls, one can easily verify CTFT properties. To begin with, run the program in continuous mode using the Run Continuously button.

Front Panel of CTFT and Its Properties: Input Signals Tab

Questions & Answers

what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
How can I make nanorobot?
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
how can I make nanorobot?
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, An interactive approach to signals and systems laboratory. OpenStax CNX. Sep 06, 2012 Download for free at http://cnx.org/content/col10667/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An interactive approach to signals and systems laboratory' conversation and receive update notifications?