<< Chapter < Page Chapter >> Page >

In this lab, we learn how to compute the continuous-time Fourier transform (CTFT), normally referred to as Fourier transform, numerically and examine its properties. Also, we explore noise cancellation and amplitude modulation as applications of Fourier transform.

Properties of ctft

The continuous-time Fourier transform (CTFT) (commonly known as Fourier transform) of an aperiodic signal x ( t ) size 12{x \( t \) } {} is given by

X ( ω ) = x ( t ) e jωt dt size 12{X \( ω \) = Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {x \( t \) e rSup { size 8{ - jωt} } ital "dt"} } {}

The signal x ( t ) size 12{x \( t \) } {} can be recovered from X ( ω ) size 12{X \( ω \) } {} via this inverse transform equation

x ( t ) = 1 X ( ω ) e jωt size 12{x \( t \) = { {1} over {2π} } Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {X \( ω \) e rSup { size 8{jωt} } dω} } {}

Some of the properties of CTFT are listed in [link] .

Properties of CTFT
Properties Time domain Frequency domain
Time shift x ( t t 0 ) size 12{x \( t - t rSub { size 8{0} } \) } {} X ( ω ) e jωt 0 size 12{X \( ω \) e rSup { size 8{ - jωt rSub { size 6{0} } } } } {}
Time scaling x ( at ) size 12{x \( ital "at" \) } {} 1 a X ω a size 12{ { {1} over { lline a rline } } X left ( { {ω} over {a} } right )} {}
Linearity a 1 x 1 ( t ) + a 2 x 2 ( t ) size 12{a rSub { size 8{1} } x rSub { size 8{1} } \( t \) +a rSub { size 8{2} } x rSub { size 8{2} } \( t \) } {} a 1 X 1 ( ω ) + a 2 X 2 ( ω ) size 12{a rSub { size 8{1} } X rSub { size 8{1} } \( ω \) +a rSub { size 8{2} } X rSub { size 8{2} } \( ω \) } {}
Time convolution x ( t ) h ( t ) size 12{x \( t \) * h \( t \) } {} X ( ω ) H ( ω ) size 12{X \( ω \) H \( ω \) } {}
Frequency convolution x ( t ) h ( t ) size 12{x \( t \) h \( t \) } {} X ( ω ) H ( ω ) size 12{X \( ω \) * H \( ω \) } {}

Refer to signals and systems textbooks [link] - [link] for more theoretical details on this transform.

Numerical approximations to ctft

Assuming that the signal x ( t ) size 12{x \( t \) } {} is zero for t <0 size 12{t"<0"} {} and t T size 12{t>= T} {} , we can approximate the CTFT integration in Equation (1) as follows:

x ( t ) e jωt dt = 0 T x ( t ) e jωt dt n = 0 N 1 x ( ) e jωnτ τ size 12{ Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {x \( t \) e rSup { size 8{ - jωt} } ital "dt"} = Int cSub { size 8{0} } cSup { size 8{T} } {x \( t \) e rSup { size 8{ - jωt} } ital "dt"} approx Sum cSub { size 8{n=0} } cSup { size 8{N - 1} } {x \( nτ \) e rSup { size 8{ - jωnτ} } τ} } {}

where T = size 12{T=Nτ} {} and N is an integer. For sufficiently small τ size 12{τ} {} , the above summation provides a close approximation to the CTFT integral. The summation n = 0 N 1 x ( ) e jωnτ size 12{ Sum cSub { size 8{n=0} } cSup { size 8{N - 1} } {x \( nτ \) e rSup { size 8{ - jωnτ} } } } {} is widely used in digital signal processing (DSP), and both LabVIEW MathScript and LabVIEW have a built-in function for it called fft . In a .m file, if N samples x ( ) size 12{x \( nτ \) } {} are stored in a vector x size 12{x} {} , then the function call

>>xw=tau*fft (x)

calculates

X ω ( k + 1 ) = τ n = 0 N 1 x ( ) e k 0 k N 1 X ( ω k ) alignl { stack { size 12{X rSub { size 8{ω} } \( k+1 \) =τ Sum cSub {n=0} cSup {N - 1} {x \( nτ \) e rSup { size 8{ - jω rSub { size 6{k} } nτ} } } matrix {{} # size 12{0<= k<= N - 1} {} } } {} #size 12{~~~~ approx X \( ω rSub { size 8{k} } \) } {} } } {}

where

ω k = { 2πk 0 k N 2 2πk τ N 2 + 1 k N 1 size 12{ω rSub { size 8{k} } = left lbrace matrix { { {2πk} over {Nτ} } {} # 0<= k<= { {N} over {2} } {} ## { {2πk} over {Nτ} } - { {2π} over {τ} } {} # { {N} over {2} } +1<= k<= N - 1{} } right none } {}

with N assumed to be even. The fft function returns the positive frequency samples before the negative frequency samples. To place the frequency samples in the right order, use the function fftshift as indicated below:

>>xw=fftshift(tau*fft (x ) )

Note that X ( ω ) size 12{X \( ω \) } {} is a vector (actually, a complex vector) of dimension N. X ( ω ) size 12{X \( ω \) } {} is complex in general despite the fact that x ( t ) size 12{x \( t \) } {} is real-valued. The magnitude of X ( ω ) size 12{X \( ω \) } {} can be computed using the function abs and the phase of X ( ω ) size 12{X \( ω \) } {} using the function angle .

Questions & Answers

anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Ece 454 and ece 554 supplemental reading. OpenStax CNX. Apr 02, 2012 Download for free at http://cnx.org/content/col11416/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ece 454 and ece 554 supplemental reading' conversation and receive update notifications?

Ask