# 0.3 Spatial frequency

 Page 1 / 1

#### Problems with temporal frequency analysis

We are accustomed to measuring frequency in terms of (1/seconds), or Hz. Sometimes we may even measure frequency in rad/sec, which is often called angular frequency. More information about temporal frequency can be found here . The reason we often use frequency domain techniques is because it allows for filtering of noise and various signals. If were just interested in listening to a particular tone, say a 500 Hz sine wave, it would be easy to just tune in to that one frequency, we would just bandpass filter out all the other noise. However, when we do this we get no information about where the signal is coming from. So, even though we could easily ignore noise, we could not steer our array to just listen in one direction. It would be more like giving it'selective hearing.'It hears what it wants to, which in this case would be signals at 500 Hz.

#### Nature of waves

As Dr. Wilson discusses in his modules on waves propagating down a transmission line, waves carry two forms information in two domains. These domains are the time and space domains, because the wave equation is usually written in terms of s(x,t) because it propagates in space at a particular time, and if one looks at standing wave at a particular point in space, one should notice that it still moves up and down in a similar manner. An example of this illustrated below. So, if we only look at the temporal frequency component, we are missing out on half the information being transmitted in the propagating signal! If we really want to be able to steer our array in a direction, then we need to analyze the spatial frequency components.

#### Introduction to spatial frequency

While we were investigating the time domain, we were able to accomplish such operations as filtering by taking $2\pi$ / $T$ , where T is the period of the signal, to get the temporal frequency denotated $\omega$ . We can use similar reasoning to obtain k, the wavenumber, which is the measure of spatial frequency. Instead of using the period of the signal, we now use the wavelength, which is the spatial equivalent to the period. This makes sense, because a period is the length of time it takes to complete one cycle, whereas the wavelength is the amount of distance the wave covers in one cycle. We there are able to change the temporal frequency equation $\omega$ = $2\pi$ / T into k = $2\pi$ / $\lambda$ .

what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!