# 6.2 Properties of power series

 Page 1 / 10
• Combine power series by addition or subtraction.
• Create a new power series by multiplication by a power of the variable or a constant, or by substitution.
• Multiply two power series together.
• Differentiate and integrate power series term-by-term.

In the preceding section on power series and functions we showed how to represent certain functions using power series. In this section we discuss how power series can be combined, differentiated, or integrated to create new power series. This capability is particularly useful for a couple of reasons. First, it allows us to find power series representations for certain elementary functions, by writing those functions in terms of functions with known power series. For example, given the power series representation for $f\left(x\right)=\frac{1}{1-x},$ we can find a power series representation for ${f}^{\prime }\left(x\right)=\frac{1}{{\left(1-x\right)}^{2}}.$ Second, being able to create power series allows us to define new functions that cannot be written in terms of elementary functions. This capability is particularly useful for solving differential equations for which there is no solution in terms of elementary functions.

## Combining power series

If we have two power series with the same interval of convergence, we can add or subtract the two series to create a new power series, also with the same interval of convergence. Similarly, we can multiply a power series by a power of x or evaluate a power series at ${x}^{m}$ for a positive integer m to create a new power series. Being able to do this allows us to find power series representations for certain functions by using power series representations of other functions. For example, since we know the power series representation for $f\left(x\right)=\frac{1}{1-x},$ we can find power series representations for related functions, such as

$y=\frac{3x}{1-{x}^{2}}\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}y=\frac{1}{\left(x-1\right)\left(x-3\right)}.$

In [link] we state results regarding addition or subtraction of power series, composition of a power series, and multiplication of a power series by a power of the variable. For simplicity, we state the theorem for power series centered at $x=0.$ Similar results hold for power series centered at $x=a.$

## Combining power series

Suppose that the two power series $\sum _{n=0}^{\infty }{c}_{n}{x}^{n}$ and $\sum _{n=0}^{\infty }{d}_{n}{x}^{n}$ converge to the functions f and g , respectively, on a common interval I .

1. The power series $\sum _{n=0}^{\infty }\left({c}_{n}{x}^{n}±{d}_{n}{x}^{n}\right)$ converges to $f±g$ on I .
2. For any integer $m\ge 0$ and any real number b , the power series $\sum _{n=0}^{\infty }b{x}^{m}{c}_{n}{x}^{n}$ converges to $b{x}^{m}f\left(x\right)$ on I .
3. For any integer $m\ge 0$ and any real number b , the series $\sum _{n=0}^{\infty }{c}_{n}{\left(b{x}^{m}\right)}^{n}$ converges to $f\left(b{x}^{m}\right)$ for all x such that $b{x}^{m}$ is in I .

## Proof

We prove i. in the case of the series $\sum _{n=0}^{\infty }\left({c}_{n}{x}^{n}+{d}_{n}{x}^{n}\right).$ Suppose that $\sum _{n=0}^{\infty }{c}_{n}{x}^{n}$ and $\sum _{n=0}^{\infty }{d}_{n}{x}^{n}$ converge to the functions f and g , respectively, on the interval I . Let x be a point in I and let ${S}_{N}\left(x\right)$ and ${T}_{N}\left(x\right)$ denote the N th partial sums of the series $\sum _{n=0}^{\infty }{c}_{n}{x}^{n}$ and $\sum _{n=0}^{\infty }{d}_{n}{x}^{n},$ respectively. Then the sequence $\left\{{S}_{N}\left(x\right)\right\}$ converges to $f\left(x\right)$ and the sequence $\left\{{T}_{N}\left(x\right)\right\}$ converges to $g\left(x\right).$ Furthermore, the N th partial sum of $\sum _{n=0}^{\infty }\left({c}_{n}{x}^{n}+{d}_{n}{x}^{n}\right)$ is

$\begin{array}{cc}\hfill \sum _{n=0}^{N}\left({c}_{n}{x}^{n}+{d}_{n}{x}^{n}\right)& =\sum _{n=0}^{N}{c}_{n}{x}^{n}+\sum _{n=0}^{N}{d}_{n}{x}^{n}\hfill \\ & ={S}_{N}\left(x\right)+{T}_{N}\left(x\right).\hfill \end{array}$

Because

$\begin{array}{cc}\hfill \underset{N\to \infty }{\text{lim}}\left({S}_{N}\left(x\right)+{T}_{N}\left(x\right)\right)& =\underset{N\to \infty }{\text{lim}}{S}_{N}\left(x\right)+\underset{N\to \infty }{\text{lim}}{T}_{N}\left(x\right)\hfill \\ & =f\left(x\right)+g\left(x\right),\hfill \end{array}$

we conclude that the series $\sum _{n=0}^{\infty }\left({c}_{n}{x}^{n}+{d}_{n}{x}^{n}\right)$ converges to $f\left(x\right)+g\left(x\right).$

#### Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Leaves accumulate on the forest floor at a rate of 2 g/cm2/yr and also decompose at a rate of 90% per year. Write a differential equation governing the number of grams of leaf litter per square centimeter of forest floor, assuming at time 0 there is no leaf litter on the ground. Does this amount approach a steady value? What is that value?
You have a cup of coffee at temperature 70°C, which you let cool 10 minutes before you pour in the same amount of milk at 1°C as in the preceding problem. How does the temperature compare to the previous cup after 10 minutes?
Abdul