<< Chapter < Page Chapter >> Page >

Problems&Exercises

Integrated Concepts

The 54.0-eV electron in [link] has a 0.167-nm wavelength. If such electrons are passed through a double slit and have their first maximum at an angle of 25 . size 12{"25" "." 0°} {} , what is the slit separation d size 12{d} {} ?

0.395 nm

Got questions? Get instant answers now!

Integrated Concepts

An electron microscope produces electrons with a 2.00-pm wavelength. If these are passed through a 1.00-nm single slit, at what angle will the first diffraction minimum be found?

Got questions? Get instant answers now!

Integrated Concepts

A certain heat lamp emits 200 W of mostly IR radiation averaging 1500 nm in wavelength. (a) What is the average photon energy in joules? (b) How many of these photons are required to increase the temperature of a person’s shoulder by 2 . C size 12{2 "." 0°C} {} , assuming the affected mass is 4.0 kg with a specific heat of 0 .83 kcal /kg ºC size 12{0 "." "83"" kcal/kg" cdot °C} {} . Also assume no other significant heat transfer. (c) How long does this take?

(a) 1.3 × 10 19 J size 12{1 "." "33" times "10" rSup { size 8{ - "19"} } " J"} {}

(b) 2 . 1 × 10 23 size 12{2 "." 1 times "10" rSup { size 8{"23"} } } {}

(c) 1 . 4 × 10 2 s size 12{1 "." 4 times "10" rSup { size 8{2} } " s"} {}

Got questions? Get instant answers now!

Integrated Concepts

On its high power setting, a microwave oven produces 900 W of 2560 MHz microwaves. (a) How many photons per second is this? (b) How many photons are required to increase the temperature of a 0.500-kg mass of pasta by 45 . C size 12{"45" "." 0°C} {} , assuming a specific heat of 0 . 900 kcal/kg ºC size 12{0 "." "900"" kcal/kg" cdot °C} {} ? Neglect all other heat transfer. (c) How long must the microwave operator wait for their pasta to be ready?

Got questions? Get instant answers now!

Integrated Concepts

(a) Calculate the amount of microwave energy in joules needed to raise the temperature of 1.00 kg of soup from 20 . C size 12{"20" "." 0°C} {} to 100 ºC size 12{"100"°C} {} . (b) What is the total momentum of all the microwave photons it takes to do this? (c) Calculate the velocity of a 1.00-kg mass with the same momentum. (d) What is the kinetic energy of this mass?

(a) 3 . 35 × 10 5 J size 12{3 "." "35" times "10" rSup { size 8{5} } " J"} {}

(b) 1 . 12 × 10 –3 kg m/s size 12{1 "." "12" times "10" rSup { size 8{"–3"} } " kg" cdot "m/s"} {}

(c) 1 . 12 × 10 –3 m/s size 12{1 "." "12" times "10" rSup { size 8{"–3"} } " m/s"} {}

(d) 6.23 × 10 –7 J size 12{6 "." "23" times "10" rSup { size 8{"–7"} } " J"} {}

Got questions? Get instant answers now!

Integrated Concepts

(a) What is γ size 12{γ} {} for an electron emerging from the Stanford Linear Accelerator with a total energy of 50.0 GeV? (b) Find its momentum. (c) What is the electron’s wavelength?

Got questions? Get instant answers now!

Integrated Concepts

(a) What is γ size 12{γ} {} for a proton having an energy of 1.00 TeV, produced by the Fermilab accelerator? (b) Find its momentum. (c) What is the proton’s wavelength?

(a) 1 . 06 × 10 3 size 12{1 "." "07" times "10" rSup { size 8{3} } } {}

(b) 5 . 33 × 10 16 kg m/s size 12{5 "." "34" times "10" rSup { size 8{ - "16"} } `"kg" cdot "m/s"} {}

(c) 1 . 24 × 10 18 m size 12{1 "." "24" times "10" rSup { size 8{ - "18"} } `m} {}

Got questions? Get instant answers now!

Integrated Concepts

An electron microscope passes 1.00-pm-wavelength electrons through a circular aperture 2 . 00 μm size 12{2 "." "00 μm"} {} in diameter. What is the angle between two just-resolvable point sources for this microscope?

Got questions? Get instant answers now!

Integrated Concepts

(a) Calculate the velocity of electrons that form the same pattern as 450-nm light when passed through a double slit. (b) Calculate the kinetic energy of each and compare them. (c) Would either be easier to generate than the other? Explain.

(a) 1 . 62 × 10 3 m/s size 12{1 "." "62" times "10" rSup { size 8{3} } " m/s"} {}

(b) 4 . 42 × 10 19 J size 12{4 "." "41" times "10" rSup { size 8{ - "19"} } " J"} {} for photon, 1 . 19 × 10 24 J size 12{1 "." "19" times "10" rSup { size 8{ - "24"} } `J} {} for electron, photon energy is 3 . 71 × 10 5 size 12{3 "." "71" times "10" rSup { size 8{5} } } {} times greater

(c) The light is easier to make because 450-nm light is blue light and therefore easy to make. Creating electrons with 7.43 μeV size 12{7 "." "43"`"μeV"} {} of energy would not be difficult, but would require a vacuum.

Got questions? Get instant answers now!

Integrated Concepts

(a) What is the separation between double slits that produces a second-order minimum at 45 . size 12{"45" "." 0°} {} for 650-nm light? (b) What slit separation is needed to produce the same pattern for 1.00-keV protons.

(a) 2 . 30 × 10 6 m size 12{2 "." "30" times "10" rSup { size 8{ - 6} } " m"} {}

(b) 3 . 20 × 10 12 m size 12{3 "." "20" times "10" rSup { size 8{ - "12"} } `m} {}

Got questions? Get instant answers now!

Integrated Concepts

A laser with a power output of 2.00 mW at a wavelength of 400 nm is projected onto calcium metal. (a) How many electrons per second are ejected? (b) What power is carried away by the electrons, given that the binding energy is 2.71 eV? (c) Calculate the current of ejected electrons. (d) If the photoelectric material is electrically insulated and acts like a 2.00-pF capacitor, how long will current flow before the capacitor voltage stops it?

Got questions? Get instant answers now!

Integrated Concepts

One problem with x rays is that they are not sensed. Calculate the temperature increase of a researcher exposed in a few seconds to a nearly fatal accidental dose of x rays under the following conditions. The energy of the x-ray photons is 200 keV, and 4 . 00 × 10 13 size 12{4 "." "00" times "10" rSup { size 8{"13"} } } {} of them are absorbed per kilogram of tissue, the specific heat of which is 0 . 830 kcal/kg ºC size 12{0 "." "830"" kcal/kg" cdot °C} {} . (Note that medical diagnostic x-ray machines cannot produce an intensity this great.)

3 . 69 × 10 4 ºC size 12{3 "." "69" times "10" rSup { size 8{ - 4} } `°C} {}

Got questions? Get instant answers now!

Integrated Concepts

A 1.00-fm photon has a wavelength short enough to detect some information about nuclei. (a) What is the photon momentum? (b) What is its energy in joules and MeV? (c) What is the (relativistic) velocity of an electron with the same momentum? (d) Calculate the electron’s kinetic energy.

Got questions? Get instant answers now!

Integrated Concepts

The momentum of light is exactly reversed when reflected straight back from a mirror, assuming negligible recoil of the mirror. Thus the change in momentum is twice the photon momentum. Suppose light of intensity 1 . 00 kW/m 2 size 12{1 "." "00 kW/m" rSup { size 8{2} } } {} reflects from a mirror of area 2 . 00 m 2 size 12{2 "." "00 m" rSup { size 8{2} } } {} . (a) Calculate the energy reflected in 1.00 s. (b) What is the momentum imparted to the mirror? (c) Using the most general form of Newton’s second law, what is the force on the mirror? (d) Does the assumption of no mirror recoil seem reasonable?

(a) 2.00 kJ

(b) 1 . 33 × 10 5 kg m/s size 12{1 "." "33" times "10" rSup { size 8{ - 5} } `"kg" cdot "m/s"} {}

(c) 1 . 33 × 10 5 N size 12{1 "." "33" times "10" rSup { size 8{ - 5} } " N"} {}

(d) yes

Got questions? Get instant answers now!

Integrated Concepts

Sunlight above the Earth’s atmosphere has an intensity of 1 . 30 kW/m 2 size 12{1 "." "30"" kW/m" rSup { size 8{2} } } {} . If this is reflected straight back from a mirror that has only a small recoil, the light’s momentum is exactly reversed, giving the mirror twice the incident momentum. (a) Calculate the force per square meter of mirror. (b) Very low mass mirrors can be constructed in the near weightlessness of space, and attached to a spaceship to sail it. Once done, the average mass per square meter of the spaceship is 0.100 kg. Find the acceleration of the spaceship if all other forces are balanced. (c) How fast is it moving 24 hours later?

Got questions? Get instant answers now!

Questions & Answers

tree physical properties of heat
Bello Reply
tree is a type of organism that grows very tall and have a wood trunk and branches with leaves... how is that related to heat? what did you smoke man?
what are the uses of dimensional analysis
Racheal Reply
Dimensional Analysis. The study of relationships between physical quantities with the help of their dimensions and units of measurements is called dimensional analysis. We use dimensional analysis in order to convert a unit from one form to another.
Emmanuel
meaning of OE and making of the subscript nc
ferunmi Reply
can I ask a question
Negash
kinetic functional force
Moyagabo Reply
what is a principal wave?
Haider Reply
A wave the movement of particles on rest position transferring energy from one place to another
Gabche
not wave. i need to know principal wave or waves.
Haider
principle wave is a superposition of wave when two or more waves meet at a point , whose amplitude is the algebraic sum of the amplitude of the waves
arshad
kindly define principal wave not principle wave (principle of super position) if u can understand my question
Haider
what is a model?
Ella Reply
hi
Muhanned
why are electros emitted only when the frequency of the incident radiation is greater than a certain value
ANSELEM Reply
b/c u have to know that for emission of electron need specific amount of energy which are gain by electron for emission . if incident rays have that amount of energy electron can be emitted, otherwise no way.
Nazir
search photoelectric effect on Google
Nazir
what is ohm's law
Pamilerin Reply
states that electric current in a given metallic conductor is directly proportional to the potential difference applied between its end, provided that the temperature of the conductor and other physical factors such as length and cross-sectional area remains constant. mathematically V=IR
ANIEFIOK
hi
Gundala
A body travelling at a velocity of 30ms^-1 in a straight line is brought to rest by application of brakes. if it covers a distance of 100m during this period, find the retardation.
Pamilerin Reply
just use v^2-u^2=2as
Gundala
how often does electrolyte emits?
alhassan
just use +€^3.7°√π%-4¢•∆¥%
v^2-u^2=2as v=0,u=30,s=100 -30^2=2a*100 -900=200a a=-900/200 a=-4.5m/s^2
akinyemi
what is distribution of trade
Grace Reply
what's acceleration
Joshua Reply
The change in position of an object with respect to time
Mfizi
Acceleration is velocity all over time
Pamilerin
hi
Stephen
It's not It's the change of velocity relative to time
Laura
Velocity is the change of position relative to time
Laura
acceleration it is the rate of change in velocity with time
Stephen
acceleration is change in velocity per rate of time
Noara
what is ohm's law
Stephen
Ohm's law is related to resistance by which volatge is the multiplication of current and resistance ( U=RI)
Laura
acceleration is the rate of change. of displacement with time.
Radical
the rate of change of velocity is called acceleration
Asma
how i don understand
Willam Reply
how do I access the Multiple Choice Questions? the button never works and the essay one doesn't either
Savannah Reply
How do you determine the magnitude of force
Peace Reply
mass × acceleration OR Work done ÷ distance
Seema
Which eye defect is corrected by a lens having different curvatures in two perpendicular directions?
Valentina Reply
acute astigmatism?

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask