<< Chapter < Page Chapter >> Page >

Calculating the slow acceleration of trains and their wheels

Large freight trains accelerate very slowly. Suppose one such train accelerates from rest, giving its 0.350-m-radius wheels an angular acceleration of 0 . 250 rad/s 2 size 12{0 "." "250"`"rad/s" rSup { size 8{2} } } {} . After the wheels have made 200 revolutions (assume no slippage): (a) How far has the train moved down the track? (b) What are the final angular velocity of the wheels and the linear velocity of the train?


In part (a), we are asked to find x size 12{x} {} , and in (b) we are asked to find ω size 12{ω} {} and v size 12{v} {} . We are given the number of revolutions θ size 12{θ} {} , the radius of the wheels r size 12{r} {} , and the angular acceleration α size 12{α} {} .

Solution for (a)

The distance x size 12{x} {} is very easily found from the relationship between distance and rotation angle:

θ = x r . size 12{θ= { {x} over {r} } } {}

Solving this equation for x size 12{x} {} yields

x = rθ. size 12{x=rθ.} {}

Before using this equation, we must convert the number of revolutions into radians, because we are dealing with a relationship between linear and rotational quantities:

θ = 200 rev rad 1 rev = 1257 rad . size 12{θ= left ("200"" rev" right ) { {2π" rad"} over {"1 rev"} } ="1257"" rad"} {}

Now we can substitute the known values into x = size 12{x=rθ} {} to find the distance the train moved down the track:

x = = 0.350 m 1257 rad = 440 m . size 12{x=rθ= left (0 "." "350"`m right ) left ("1257"" rad" right )="440"" m"} {}

Solution for (b)

We cannot use any equation that incorporates t to find ω , because the equation would have at least two unknown values. The equation ω 2 = ω 0 2 + 2 αθ will work, because we know the values for all variables except ω :

ω 2 = ω 0 2 + 2 αθ

Taking the square root of this equation and entering the known values gives

ω = 0 + 2 ( 0 . 250  rad/s 2 ) ( 1257  rad ) 1 / 2 = 25.1 rad/s. alignl { stack { size 12{ω= left [0+2 \( 0 "." "250"" rad/s" rSup { size 8{2} } \) \( "1257"" rad" \) right ]rSup { size 8{1/2} } "." } {} # ="25" "." 1" rad/s" {}} } {}

We can find the linear velocity of the train, v size 12{v} {} , through its relationship to ω size 12{ω} {} :

v = = 0.350 m 25.1 rad/s = 8.77 m/s . size 12{v=rω= left (0 "." "350"" m" right ) left ("25" "." 1" rad/s" right )=8 "." "77"" m/s"} {}


The distance traveled is fairly large and the final velocity is fairly slow (just under 32 km/h).

Got questions? Get instant answers now!

There is translational motion even for something spinning in place, as the following example illustrates. [link] shows a fly on the edge of a rotating microwave oven plate. The example below calculates the total distance it travels.

The figure shows a fly that has landed on the rotating plate of the microwave. The direction of rotation of the plate, omega, is counterclockwise and is shown with an arrow.
The image shows a microwave plate. The fly makes revolutions while the food is heated (along with the fly).

Calculating the distance traveled by a fly on the edge of a microwave oven plate

A person decides to use a microwave oven to reheat some lunch. In the process, a fly accidentally flies into the microwave and lands on the outer edge of the rotating plate and remains there. If the plate has a radius of 0.15 m and rotates at 6.0 rpm, calculate the total distance traveled by the fly during a 2.0-min cooking period. (Ignore the start-up and slow-down times.)


First, find the total number of revolutions θ size 12{θ} {} , and then the linear distance x size 12{x} {} traveled. θ = ω ¯ t size 12{θ= {overline {ωt}} } {} can be used to find θ size 12{θ} {} because ω - size 12{ { bar {ω}}} {} is given to be 6.0 rpm.


Entering known values into θ = ω ¯ t size 12{θ= {overline {ωt}} } {} gives

θ = ω - t = 6.0 rpm 2.0 min = 12 rev .

As always, it is necessary to convert revolutions to radians before calculating a linear quantity like x size 12{x} {} from an angular quantity like θ size 12{θ} {} :

θ = 12 rev 2 π rad 1 rev = 75 .4 rad. size 12{θ= left ("12"" rev" right ) left ( { {2π" rad"} over {"1 rev"} } right )="75" "." 4" rad"} {}

Now, using the relationship between x size 12{x} {} and θ size 12{θ} {} , we can determine the distance traveled:

x = = 0 . 15  m 75 . 4  rad = 11  m . size 12{x=rθ= left (0 "." "15"" m" right ) left ("75" "." 4" rad" right )="11" "." 3" m"} {}


Quite a trip (if it survives)! Note that this distance is the total distance traveled by the fly. Displacement is actually zero for complete revolutions because they bring the fly back to its original position. The distinction between total distance traveled and displacement was first noted in One-Dimensional Kinematics .

Got questions? Get instant answers now!

Rotational kinematics has many useful relationships, often expressed in equation form. Are these relationships laws of physics or are they simply descriptive? (Hint: the same question applies to linear kinematics.)

Rotational kinematics (just like linear kinematics) is descriptive and does not represent laws of nature. With kinematics, we can describe many things to great precision but kinematics does not consider causes. For example, a large angular acceleration describes a very rapid change in angular velocity without any consideration of its cause.

Got questions? Get instant answers now!

Section summary

  • Kinematics is the description of motion.
  • The kinematics of rotational motion describes the relationships among rotation angle, angular velocity, angular acceleration, and time.
  • Starting with the four kinematic equations we developed in the One-Dimensional Kinematics , we can derive the four rotational kinematic equations (presented together with their translational counterparts) seen in [link] .
  • In these equations, the subscript 0 denotes initial values ( x 0 size 12{x rSub { size 8{0} } } {} and t 0 size 12{t rSub { size 8{0} } } {} are initial values), and the average angular velocity ω - size 12{ { bar {ω}}} {} and average velocity v - size 12{ { bar {v}}} {} are defined as follows:
    ω ¯ = ω 0 + ω 2  and  v ¯ = v 0 + v 2 . size 12{ {overline {ω}} = { {ω rSub { size 8{0} } +ω} over {2} } " and " {overline {v}} = { {v rSub { size 8{0} } +v} over {2} } " " \( "constant "α, a \) } {}


With the aid of a string, a gyroscope is accelerated from rest to 32 rad/s in 0.40 s.

(a) What is its angular acceleration in rad/s 2 ?

(b) How many revolutions does it go through in the process?

(a) 80 rad/s 2 size 12{80 rad/s" rSup { size 8{2} } } {}

(b) 1.0 rev

Got questions? Get instant answers now!

Suppose a piece of dust finds itself on a CD. If the spin rate of the CD is 500 rpm, and the piece of dust is 4.3 cm from the center, what is the total distance traveled by the dust in 3 minutes? (Ignore accelerations due to getting the CD rotating.)

Got questions? Get instant answers now!

A gyroscope slows from an initial rate of 32.0 rad/s at a rate of 0 . 700  rad/s 2 size 12{0 "." "700"`"rad/s" rSup { size 8{2} } } {} .

(a) How long does it take to come to rest?

(b) How many revolutions does it make before stopping?

(a) 45.7 s

(b) 116 rev

Got questions? Get instant answers now!

During a very quick stop, a car decelerates at 7 . 00  m/s 2 size 12{7 "." "00"`"m/s" rSup { size 8{2} } } {} .

(a) What is the angular acceleration of its 0.280-m-radius tires, assuming they do not slip on the pavement?

(b) How many revolutions do the tires make before coming to rest, given their initial angular velocity is 95 . 0  rad/s size 12{"95" "." 0`"rad/s"} {} ?

(c) How long does the car take to stop completely?

(d) What distance does the car travel in this time?

(e) What was the car’s initial velocity?

(f) Do the values obtained seem reasonable, considering that this stop happens very quickly?

The figure shows the left arm of a man with tattoo imprints and wearing a glove. He is circulating a yo-yo toy, which is in mid air and connected by the string to his hand. Some people are standing in the background watching the yo-yo trick.
Yo-yos are amusing toys that display significant physics and are engineered to enhance performance based on physical laws. (credit: Beyond Neon, Flickr)
Got questions? Get instant answers now!

Everyday application: Suppose a yo-yo has a center shaft that has a 0.250 cm radius and that its string is being pulled.

(a) If the string is stationary and the yo-yo accelerates away from it at a rate of 1 . 50  m/s 2 size 12{1 "." "50"`"m/s" rSup { size 8{2} } } {} , what is the angular acceleration of the yo-yo?

(b) What is the angular velocity after 0.750 s if it starts from rest?

(c) The outside radius of the yo-yo is 3.50 cm. What is the tangential acceleration of a point on its edge?

a) 6 00 rad/s 2 size 12{ {underline {6"00 rad/s" rSup { size 8{2} } }} } {}

b) 450 rad/s

c) 21.0 m/s

Got questions? Get instant answers now!

Questions & Answers

derivative of first differential equation
Haruna Reply
why static friction is greater than Kinetic friction
Ali Reply
draw magnetic field pattern for two wire carrying current in the same direction
Ven Reply
An American traveler in New Zealand carries a transformer to convert New Zealand’s standard 240 V to 120 V so that she can use some small appliances on her trip.
nkombo Reply
What is the ratio of turns in the primary and secondary coils of her transformer?
How electric lines and equipotential surface are mutually perpendicular?
Abid Reply
The potential difference between any two points on the surface is zero that implies È.Ŕ=0, Where R is the distance between two different points &E= Electric field intensity. From which we have cos þ =0, where þ is the angle between the directions of field and distance line, as E andR are zero. Thus
sorry..E and R are non zero...
By how much leeway (both percentage and mass) would you have in the selection of the mass of the object in the previous problem if you did not wish the new period to be greater than 2.01 s or less than 1.99 s?
Elene Reply
what Is linear momentum
Victoria Reply
why no diagrams
Blessing Reply
Describe an experiment to determine short half life
Tyson Reply
what is science
Kenedy Reply
it's a natural phenomena
please can someone help me with explanations of wave
there are seven basic type of wave radio waves, gyamma rays (nuclear energy), microwave,etc you can also search 🔍 on Google :-)
A 20MH coil has a resistance of 50 ohms and us connected in series with a capacitor to a 520MV supply
Musa Reply
what is physics
Caya Reply
it is the science which we used in our daily life
Physics is the branch of science that deals with the study of matter and the interactions it undergoes with energy
it is branch of science which deals with study of happening in the human life
A 20MH coil has a resistance of 50 ohms and is connected in series with a capacitor to a 250MV supply if the circuit is to resonate at 100KHZ, Determine 1: the capacitance of the capacitor 2: the working voltage of the circuit, given that pie =3.142
Physics is the branch of science that deals with the study of matter and the interactions it undergoes with energy
Heat is transfered by thermal contact but if it is transfered by conduction or radiation, is it possible to reach in thermal equilibrium?
Eden Reply
Yes, It is possible by conduction if Surface is Adiabatic
Yeah true ilwith d help of Adiabatic
what are the fundamentals qualities
Magret Reply
what is physic3
what is physic
Physics? Is a branch of science dealing with matter in relation to energy.
Physic... Is a purging medicine, which stimulates evacuation of the bowels.
are you asking for qualities or quantities?
fundamental quantities are, length , mass, time, current, luminous intensity, amount of substance, thermodynamic temperature.
fundamental quantities are quantities that are independent of others and cannot be define in terms of other quantities there is nothing like Qualities we have only fundamental quantities which includes; length,mass,time, electric current, luminous density, temperature, amount of substance etc
give examples of three dimensional frame of reference
Ekwunazor Reply
Yes the Universe itself
Practice Key Terms 1

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?