# 10.2 Kinematics of rotational motion  (Page 3/4)

 Page 3 / 4

## Calculating the slow acceleration of trains and their wheels

Large freight trains accelerate very slowly. Suppose one such train accelerates from rest, giving its 0.350-m-radius wheels an angular acceleration of $0\text{.}\text{250}\phantom{\rule{0.25em}{0ex}}{\text{rad/s}}^{2}$ . After the wheels have made 200 revolutions (assume no slippage): (a) How far has the train moved down the track? (b) What are the final angular velocity of the wheels and the linear velocity of the train?

Strategy

In part (a), we are asked to find $x$ , and in (b) we are asked to find $\omega$ and $v$ . We are given the number of revolutions $\theta$ , the radius of the wheels $r$ , and the angular acceleration $\alpha$ .

Solution for (a)

The distance $x$ is very easily found from the relationship between distance and rotation angle:

$\theta =\frac{x}{r}.$

Solving this equation for $x$ yields

$x=\mathrm{r\theta .}$

Before using this equation, we must convert the number of revolutions into radians, because we are dealing with a relationship between linear and rotational quantities:

$\theta =\left(\text{200}\phantom{\rule{0.25em}{0ex}}\text{rev}\right)\frac{2\pi \phantom{\rule{0.25em}{0ex}}\text{rad}}{\text{1 rev}}=\text{1257}\phantom{\rule{0.25em}{0ex}}\text{rad}.$

Now we can substitute the known values into $x=\mathrm{r\theta }$ to find the distance the train moved down the track:

$x=\mathrm{r\theta }=\left(0.350 m\right)\left(\text{1257 rad}\right)=\text{440}\phantom{\rule{0.25em}{0ex}}\text{m}.$

Solution for (b)

We cannot use any equation that incorporates $t$ to find $\omega$ , because the equation would have at least two unknown values. The equation ${\omega }^{2}={{\omega }_{0}}^{2}+2\text{αθ}$ will work, because we know the values for all variables except $\omega$ :

${\omega }^{2}={{\omega }_{0}}^{2}+2\text{αθ}$

Taking the square root of this equation and entering the known values gives

We can find the linear velocity of the train, $v$ , through its relationship to $\omega$ :

$v=\mathrm{r\omega }=\left(0.350 m\right)\left(\text{25.1 rad/s}\right)=\text{8.77 m/s}.$

Discussion

The distance traveled is fairly large and the final velocity is fairly slow (just under 32 km/h).

There is translational motion even for something spinning in place, as the following example illustrates. [link] shows a fly on the edge of a rotating microwave oven plate. The example below calculates the total distance it travels.

## Calculating the distance traveled by a fly on the edge of a microwave oven plate

A person decides to use a microwave oven to reheat some lunch. In the process, a fly accidentally flies into the microwave and lands on the outer edge of the rotating plate and remains there. If the plate has a radius of 0.15 m and rotates at 6.0 rpm, calculate the total distance traveled by the fly during a 2.0-min cooking period. (Ignore the start-up and slow-down times.)

Strategy

First, find the total number of revolutions $\theta$ , and then the linear distance $x$ traveled. $\theta =\overline{\omega }t$ can be used to find $\theta$ because $\stackrel{-}{\omega }$ is given to be 6.0 rpm.

Solution

Entering known values into $\theta =\overline{\omega }t$ gives

$\theta =\stackrel{-}{\omega }t=\left(\text{6.0 rpm}\right)\left(\text{2.0 min}\right)=\text{12 rev}.$

As always, it is necessary to convert revolutions to radians before calculating a linear quantity like $x$ from an angular quantity like $\theta$ :

$\theta =\left(\text{12 rev}\right)\left(\frac{2\pi \phantom{\rule{0.25em}{0ex}}\text{rad}}{\text{1 rev}}\right)=\text{75}\text{.4 rad.}$

Now, using the relationship between $x$ and $\theta$ , we can determine the distance traveled:

Discussion

Quite a trip (if it survives)! Note that this distance is the total distance traveled by the fly. Displacement is actually zero for complete revolutions because they bring the fly back to its original position. The distinction between total distance traveled and displacement was first noted in One-Dimensional Kinematics .

Rotational kinematics has many useful relationships, often expressed in equation form. Are these relationships laws of physics or are they simply descriptive? (Hint: the same question applies to linear kinematics.)

Rotational kinematics (just like linear kinematics) is descriptive and does not represent laws of nature. With kinematics, we can describe many things to great precision but kinematics does not consider causes. For example, a large angular acceleration describes a very rapid change in angular velocity without any consideration of its cause.

## Section summary

• Kinematics is the description of motion.
• The kinematics of rotational motion describes the relationships among rotation angle, angular velocity, angular acceleration, and time.
• Starting with the four kinematic equations we developed in the One-Dimensional Kinematics , we can derive the four rotational kinematic equations (presented together with their translational counterparts) seen in [link] .
• In these equations, the subscript 0 denotes initial values ( ${x}_{0}$ and ${t}_{0}$ are initial values), and the average angular velocity $\stackrel{-}{\omega }$ and average velocity $\stackrel{-}{v}$ are defined as follows:

## Problems&Exercises

With the aid of a string, a gyroscope is accelerated from rest to 32 rad/s in 0.40 s.

(a) What is its angular acceleration in rad/s 2 ?

(b) How many revolutions does it go through in the process?

(a) $80\phantom{\rule{0.25em}{0ex}}{\text{rad/s}}^{2}$

(b) 1.0 rev

Suppose a piece of dust finds itself on a CD. If the spin rate of the CD is 500 rpm, and the piece of dust is 4.3 cm from the center, what is the total distance traveled by the dust in 3 minutes? (Ignore accelerations due to getting the CD rotating.)

A gyroscope slows from an initial rate of 32.0 rad/s at a rate of .

(a) How long does it take to come to rest?

(b) How many revolutions does it make before stopping?

(a) 45.7 s

(b) 116 rev

During a very quick stop, a car decelerates at .

(a) What is the angular acceleration of its 0.280-m-radius tires, assuming they do not slip on the pavement?

(b) How many revolutions do the tires make before coming to rest, given their initial angular velocity is ?

(c) How long does the car take to stop completely?

(d) What distance does the car travel in this time?

(e) What was the car’s initial velocity?

(f) Do the values obtained seem reasonable, considering that this stop happens very quickly?

Everyday application: Suppose a yo-yo has a center shaft that has a 0.250 cm radius and that its string is being pulled.

(a) If the string is stationary and the yo-yo accelerates away from it at a rate of , what is the angular acceleration of the yo-yo?

(b) What is the angular velocity after 0.750 s if it starts from rest?

(c) The outside radius of the yo-yo is 3.50 cm. What is the tangential acceleration of a point on its edge?

a) $6{\text{00 rad/s}}^{2}$

c) 21.0 m/s

Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0º20.0º with the horizontal. (See [link] .) He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate an
What is thermal heat all about
why uniform circular motion is called a periodic motion?.
when a train start from A & it returns at same station A . what is its acceleration?
what is distance of A to B of the stations and what is the time taken to reach B from A
BELLO
the information provided is not enough
aliyu
Hmmmm maybe the question is logical
yusuf
where are the parameters for calculation
HENRY
there is enough information to calculate an AVERAGE acceleration
Kwok
mistake, there is enough information to calculate an average velocity
Kwok
~\
Abel
what is the unit of momentum
Abel
wha are the types of radioactivity ?
what are the types of radioactivity
Worku
what is static friction
It is the opposite of kinetic friction
Mark
static fiction is friction between two surfaces in contact an none of sliding over on another, while Kinetic friction is friction between sliding surfaces in contact.
MINDERIUM
I don't get it,if it's static then there will be no friction.
author
It means that static friction is that friction that most be overcome before a body can move
kingsley
static friction is a force that keeps an object from moving, and it's the opposite of kinetic friction.
author
It is a force a body must overcome in order for the body to move.
Eboh
If a particle accelerator explodes what happens
Eboh
why we see the edge effect in case of the field lines of capacitor?
Arnab
what is wave
what is force
Muhammed
force is something which is responsible for the object to change its position
MINDERIUM
more technically it is the product of mass of an object and Acceleration produced in it
MINDERIUM
wave is disturbance in any medium
iqra
energy is distributed in any medium through particles of medium.
iqra
If a particle accelerator explodes what happens
we have to first figure out .... wats a particle accelerator first
Teh
What is surface tension
The resistive force of surface.
iqra
Who can tutor me on simple harmonic motion
on both a string and peldulum?
Anya
spring*
Anya
Yea
yusuf
Do you have a chit-chat contact
yusuf
I dont have social media but i do have an email?
Anya
Which is
yusuf
Where are you chatting from
yusuf
I don't understand the basics of this group
Jimmy
teach him SHM init
Anya
Simple harmonic motion
yusuf
how.an.equipotential.line is two dimension and equipotential surface is three dimension ?
definition of mass of conversion
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration. To change from weight to mass divide by gravity (9.8 m/s^2).
Marisa
how many subject is in physics
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
effiom
how many topic are in physics
Praise
Praise what level are you
yusuf
If u are doing a levels in your first year you do AS topics therefore you do 5 big topic i.e particles radiation, waves and optics, mechanics,materials, electricity. After that you do A level topics like Specific Harmonic motion circular motion astrophysics depends really
Anya
Yeah basics of physics prin8
yusuf
Heat nd Co for a level
yusuf
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
Tamdy
hallow
Boniface
Boniface
the range of objects and phenomena studied in physics is
Boniface