<< Chapter < Page Chapter >> Page >

Notasie

Khan academy video oor getalpatrone

Die n d e -term van 'n reeks word geskryf as a n . So byvoorbeeld, is die eerste term van 'n reeks a 1 en die tiende term van 'n reeks is a 10 . ʼn Reeks hoef nie ʼn patroon te volg nie, maar wanneer dit wel 'n patroon het, kan ons dit gewoonlik as ʼn formule skryf om die n d e -term, a n , te bereken. In die reeks

1 ; 4 ; 9 ; 16 ; 25 ; ...

waar die reeks bestaan uit die vierkante van heelgetalle, is die formule vir die n de -term:

a n = n 2

Jy kan sien dat dit reg is deur te kyk na:

a 1 = 1 2 = 1 a 2 = 2 2 = 4 a 3 = 3 2 = 9 a 4 = 4 2 = 16 a 5 = 5 2 = 25 ...

Dus, deur [link] te gebruik, kan ons ʼn patroon van die vierkante van heelgetalle vorm.

Ons kan ook 'n konstante verskil tussen die terme bepaal vir sekere patrone.

Konstante verskil
Die konstante verskil is die verskil tussen opeenvolgende terme en word aagedui met die letter d.

Byvoorbeeld, beskou die reeks: 10 ; 7 ; 4 ; 1 ; ... . Om die gemeenskaplike verskil te vind, trek ons die betrokke term af van die volgende term.

7 - 10 = - 3 4 - 7 = - 3 1 - 4 = - 3

Soos voorheen, studeer jy en 3 vriende wiskunde, en julle sit rondom ʼn vierkantige tafel. ʼn Paar minute later besluit 2 ander vriende om by julle aan te sluit en wil kom sit en julle sit ʼn ekstra tafel by sodat al 6 van julle kan sit. Weereens besluit nog 2 van jou vriende om by julle aan te sluit en julle skuif ʼn derde tafel sodat daar genoeg plek is vir 8 van julle soos in die prentjie:

Twee ekstra mense kan sit vir elke tafel wat hulle bysit.

Vind ʼn wiskundige uitdrukking vir die getal mense wat om n tafels kan sit. Gebruik dan die algemene formule om te bepaal hoeveel mense om 12 tafels kan sit en hoeveel tafels is nodig sodat 20 mense kan sit.

  1. Aantal tafels , n Aantal mense wat kan sit Formule
    1 4 = 4 = 4 + 2 · ( 0 )
    2 4 + 2 = 6 = 4 + 2 · ( 1 )
    3 4 + 2 + 2 = 8 = 4 + 2 · ( 2 )
    4 4 + 2 + 2 + 2 = 10 = 4 + 2 · ( 3 )
                   
    n 4 + 2 + 2 + 2 + ... + 2 = 4 + 2 · ( n - 1 )
  2. Die aantal mense wat rondom n tafels kan sit, is:

    a n = 4 + 2 · ( n - 1 )
  3. Deur te kyk na die voorbeeld van die vorige gedeelte, bereken hoeveel mense kan rondom 12 tafels sit. Ons soek vir a 12 , dit is, waar n = 12 :

    a n = a 1 + d · ( n - 1 ) a 12 = 4 + 2 · ( 12 - 1 ) = 4 + 2 ( 11 ) = 4 + 22 = 26
  4. a n = a 1 + d · ( n - 1 ) 20 = 4 + 2 · ( n - 1 ) 20 - 4 = 2 · ( n - 1 ) 16 ÷ 2 = n - 1 8 + 1 = n n = 9
  5. 26 mense kan rondom 12 tafels sit en 9 tafels is nodig sodat 20 mense kan sit.

Dit is ook belangrik om te let op die verskil tussen n en a n : n kan gesien word as 'n plekhouer, terwyl a n die waarde is by die plek wat "gehou" word deur n . Soos in ons "Studeertafel" voorbeeld, kan 4 mense rondom die eerste tafel (Tabel 1) sit. Dus, by plek n = 1 , is die waarde van a 1 = 4 ensovoorts:

n 1 2 3 4 ...
a n 4 6 8 10 ...

Ondersoek : algemene formule

  1. Vind die algemene formule vir die volgende reekse en vind dan a 10 , a 50 en a 100 :
    1. 2 ; 5 ; 8 ; 11 ; 14 ; ...
    2. 0 ; 4 ; 8 ; 12 ; 16 ; ...
    3. 2 ; - 1 ; - 4 ; - 7 ; - 10 ; ...
  2. Hieronder is die algemene formules gegee vir 'n paar reekse. Bereken die terme wat weggelaat is.
    1. 0 ; 3 ; . . . ; 15 ; 24        n 2 - 1
    2. 3 ; 2 ; 1 ; 0 ; . . . ; - 2        - n + 4
    3. - 11 ; . . . ; - 7 ; . . . ; - 3        - 13 + 2 n

Patrone en bewerings

Khan academy video oor getalpatrone - 2

In wiskunde is 'n bewering 'n wiskundige stelling wat lyk of dit waar is, maar wat nog nie formeel as waar bewys is nie. 'n Bewering kan gesien word as 'n intelligente raaiskoot of idee wat moontlik 'n patroon kan wees.

Byvoorbeeld: Maak 'n bewering oor die getal wat sal volg, gebaseer op die patroon 2 ; 6 ; 11 ; 17 : . . .

Die getalle vermeerder met 4, dan 5, dan 6.

Bewering: Die volgende getal sal vermeerder met 7. So ons verwag dat die volgende getal 17 + 7 = 24 sal wees.

Beskou die volgende patroon:

1 2 + 1 = 2 2 - 2 2 2 + 2 = 3 2 - 3 3 2 + 3 = 4 2 - 4 4 2 + 4 = 5 2 - 5
  1. Voeg nog twee rye by aan die die einde van die patroon.
  2. Maak 'n bewering oor die patroon en druk die bewering uit in woorde.
  3. Veralgemeen die bewering vir die patroon (met ander woorde, beskryf die bewering algebraïes).
  4. Bewys dat die bewering waar is.
  1. 5 2 + 5 = 6 2 - 6 6 2 + 6 = 7 2 - 7
  2. As 'n getal gekwadreer word en die getal dan weer by sy kwadraat getel word, is die resultaat dieselfde as om die volgende getal te kwadreer en dan die getal af te trek van die kwadraat.

  3. Ons het besluit om x hier te gebruik. Jy kan enige letter kies om die patroon te veralgemeen.

    x 2 + x = ( x + 1 ) 2 - ( x + 1 )
  4. Linkerkant x 2 + x
    Regterkant : ( x + 1 ) 2 - ( x + 1 )
    Regterkant = x 2 + 2 x + 1 - x - 1 = x 2 + x = Linkerkant Dus x 2 + x = ( x + 1 ) 2 - ( x + 1 )

Opsomming

  • Daar is 'n hele paar spesiale reekse van getalle:
    • Driehoeksgetalle 1 ; 3 ; 6 ; 10 ; 15 ; 21 ; 28 ; 36 ; 45 ; . . .
    • Vierkantsgetalle 1 ; 4 ; 9 ; 16 ; 25 ; 36 ; 49 ; 64 ; 81 ; . . .
    • Derdemagsgetalle 1 ; 8 ; 27 ; 64 ; 125 ; 216 ; 343 ; 512 ; 729 ; . . .
    • Fibonacci Getalle 0 ; 1 ; 1 ; 2 ; 3 ; 5 ; 8 ; 13 ; 21 ; 34 ; . . .
  • Die algemene formule is a n = a 1 + d · ( n - 1 ) waar d die konstante verskil is tussen die verskillende terme en a n is die n de -term. Ons kan 'n algemene formule uitwerk vir elke getalpatroon en dit gebruik om te voorspel wat enige getal in die patroon sal wees.

Oefeninge

  1. Vind die n de -term vir: 3 ; 7 ; 11 ; 15 ; ...
  2. Vind die algemene term vir die volgende reekse:
    1. - 2 ; 1 ; 4 ; 7 ; ...
    2. 11 ; 15 ; 19 ; 23 ; ...
    3. reeks met a 3 = 7 en a 8 = 15
    4. reeks met a 4 = - 8 en a 10 = 10
  3. Die sitplekke in 'n gedeelte van 'n sportstadion kan so gerangskik word dat die eerste ry 15 sitplekke het, die tweede ry 19 sitplekke, die derde ry 23 sitplekke, ens. Bereken hoeveel sitpleke is daar in ry 25.
  4. 'n Enkele vierkant kan gemaak word van 4 vuurhoutjies. Om twee vierkante langs mekaar te maak het jy 7 vuurhoutjies nodig, om drie vierkante langs mekaar in 'n ry te maak het jy 10 vuurhoutjies nodig. Bepaal:
    1. die eerste term
    2. die konstante verskil
    3. die algemene formule
    4. hoeveel vuurhoutjies benodig word om 25 vierkante langs mekaar te maak
  5. Jy wil begin om geld te spaar, maar omdat jy dit nog nooit gedoen het nie, besluit jy om stadig te begin. Aan die einde van die eerste week sit jy R5 in jou bankrekening, aan die einde van die tweede week R10, en aan die einde van die derde week R15. Na hoeveel weke sit jy R50 in jou bankrekening?
  6. 'n Horisontale lyn kruis 'n tou op vier punte en deel die tou op in 5 dele, soos hieronder gewys word.
    As die tou 19 keer gekruis word deur ewewydige lyne en elke lyn kruis die tou vier keer op verskillende plekke, bereken in hoeveel dele die tou opgedeel word.

Questions & Answers

List and explain four factors of production
Vuyo Reply
capital labour entrepreneur natural resources
Thembi
What is supply
Ogodo Reply
when the supply decreases demand also decreases
Thembi
types of demand and the explanation
akin Reply
what is demand
akin Reply
other things remaining same if demend is increases supply is also decrease and if demend is decrease supply is also increases is called the demand
Mian
if the demand increase supply also increases
Thembi
you are wrong this is the law of demand and not the definition
Tarasum
Demand is the willingness of buy and ability to buy in a specific time period in specific place. Mian you are saying law of demand but not in proper way. you have to keep studying more. because its very basic things in Economics.
Hamza
what is commercialization?
Doris Reply
How to talk loan for bank?
Alfred Reply
what is the meaning of gpa?
Ritisha Reply
Answer: GPA stands for Grade Point Average. It is a standard way of measuring academic achievement in the U.S. Basically, it goes as follows: Each course is given a certain number of "units" or "credits", depending on the content of the course.
Yusuf
what is small and Microbuisenes
tadesse Reply
What is fiscal policy
Dansofo
Who is the funder of Economic
Dansofo
founder , that is Adam Smith
Daniel
what is model
Daniel Reply
The wealth of Nations
Yusuf Reply
the wealth of nations, is it the first?
Umar
Yes very sure it was released in 1759
Yusuf
thank you Yusuf.
Umar
then when did he died?
Umar
17 July 1790 Born: 16 June 1723, Kirkcaldy, United Kingdom Place of death: Panmure House, Edinburgh, United Kingdom
Yusuf
1790
Yusuf
that's my today questions, thank you Yusuf it's bed time see u after.
Umar
what is fiscal policy
kemigisha Reply
what's mode?
Umar Reply
mode is the highest occurring frequency in a distribution
Bola
mode is the most commonly occurring item in a set of data.
Umar
Please, what is the difference between monopoly and monopsony?
Olaleye Reply
is there monopsony word?
Umar
I have no idea though
Umar
please, in which year Adam smith was born?
Umar
monopsony is when there's only one buyer while monopoly is when there's only one producer.
Bola
who have idea on Banter
Ibrahim
like trade by barter?
Bola
Monopoly is when there's excessively one seller and there is no entry in the market while monopsony is when there is one buyer
kemigisha
Adam smith was born in 1723
Bola
 (uncountable) Good humoured, playful, typically spontaneous conversation. verb (intransitive) To engage in banter or playful conversation. (intransitive) To play or do something amusing. (transitive) To tease mildly.
Umar
which book Adam smith published first? the first book of Adam smith pls.
Umar
wealth on nation, 1776
Daniel
what is market power and how can it affect an economy?
Gab Reply
market power:- where a firm is said to be a price setter.market power benefits the powerful at the expense of others.
Umar
Market power refers to the ability of a firm (or group of firms) to raise and maintain price above the level that would prevail under competition is referred to as market or monopoly power. The exercise of market power leads to reduced output and loss of economic welfare
Kartheek
find information about the national budget
Molahlegi
three branches of economics in which tourism is likely to figure
Makgotso Reply
What are those three branches?
IlRegno
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Siyavula textbooks: wiskunde (graad 10) [caps]. OpenStax CNX. Aug 04, 2011 Download for free at http://cnx.org/content/col11328/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: wiskunde (graad 10) [caps]' conversation and receive update notifications?

Ask