<< Chapter < Page Chapter >> Page >
In this project you will create an oscillator whose output tracks a specified amplitude and frequency trajectory. With this general-purpose oscillator you can define multiple frequency/amplitude trajectories that can be combined to create complex sounds. In particular, you will design the sound so that its spectrogram makes a recognizable picture!
This module refers to LabVIEW, a software development environment that features a graphical programming language. Please see the LabVIEW QuickStart Guide module for tutorials and documentation that will help you:
•Apply LabVIEW to Audio Signal Processing
•Get started with LabVIEW
•Obtain a fully-functional evaluation edition of LabVIEW

Objective

Additive synthesis builds up complex sounds from simple sounds (sinusoids). Additive synthesis implies more than just doing Fourier series, though: each sinusoidal component is assigned its own frequency and amplitude trajectory (resulting in a partial), so complex, time-varying sounds can be generated by summing these partials together.

In this project you will create an oscillator whose output tracks a specified amplitude and frequency trajectory. With this general-purpose oscillator you can define multiple frequency/amplitude trajectories that can be combined to create complex sounds. In particular, you will design the sound so that its spectrogram makes a recognizable picture!

Prerequisite modules

If you have not done so already, please study the prerequisite modules Additive Synthesis Concepts and Additive Synthesis Techniques . If you are relatively new to LabVIEW, consider taking the course LabVIEW Techniques for Audio Signal Processing which provides the foundation you need to complete this mini-project activity, including working with arrays, creating subVIs, playing an array to the soundcard, and saving an array as a .wav sound file.

Deliverables

  • All LabVIEW code that you develop (block diagrams and front panels)
  • All generated sounds in .wav format
  • Any plots or diagrams requested
  • Summary write-up of your results

Part 1: general-purpose sinusoidal oscillator

Develop a subVI called gposc.vi that accepts a frequency trajectory (in Hz), an amplitude trajectory, and a sampling frequency (in Hz) to produce a sinusoidal output whose amplitude and frequency tracks the two input trajectories, respectively. The two trajectories are arrays that should be of the same length.

Demonstrate that your oscillator works properly by showing the output of your VI (spectrogram and .wav file) for the amplitude and frequency trajectories produced by a LabVIEW MathScript node that contains the following code:

ff=[linspace(200,1600,2.5*fs) ... linspace(1600,800,1.5*fs)]; aa=[linspace(1,0,3*fs) ...linspace(0,0.75,fs)];

where fs is the sampling frequency in Hz, ff is the output frequency trajectory (also in Hz), and aa is the amplitude trajectory (between 0 and 1). Use a sampling frequency of 5 kHz when you make the spectrogram and soundfile.

Plot the trajectories ff and aa and compare to your spectrogram.

Remember, the instantaneous frequency of your general-purpose sinusoidal oscillator is related to the time-varying phase of the sine function. That is, if the sinusoidal signal is defined as y ( t ) = sin ( θ ( t ) ) , then the instantaneous frequency of the sinusoid is ω ( t ) = d θ ( t ) / d t radians per second. Because you are given a frequency trajectory that relates to ω ( t ) , which mathematical operation yields the phase function θ ( t ) ?

Here's a LabVIEW coding tip: You will find the built-in VI "Mathematics | Integ and Diff | Integral x(t)" to be essential for this part of the project.

Part 2: frequency trajectory design

You can make your spectrogram art project sound more musically appealing when you design the frequency trajectories to account for frequency perception ; refer to Perception of Sound for a detailed treatment of this subject. Design your trajectories in "log space" (using logarithmic graph paper) and then convert to actual frequency just before invoking your general-purpose sinusoidal oscillator.

Review Additive Synthesis Techniques to learn how to create your frequency trajectories for this part of the project.

Part 3: amplitude trajectory design

The discussion of Part 2 pertains to the design of your amplitude trajectories, as well. Perception of intensity (loudness) is also logarithmic (refer to Perception of Sound and review the section on intensity perception). In this part you will design your amplitude trajectory in "log space," but now using traditional decibels (dB). An intensity trajectory can be converted to amplitude by "undoing" the equation that relates a value to the same value expressed in decibels: X dB = 20 log 10 ( X ) .

Experiment with your spectrogram display device to learn the intensity-to-color mapping. Specifically, you could produce a sinusoidal signal with increasing intensity values over time, then match up the plotted colors to the known intensity values.

Part 4: spectrogram art

Design a spectrogram picture using multiple frequency/amplitude trajectories. Include your paper-and-pencil drawing of the spectrogram as part of your deliverables. Use your creativity to make an interesting and recognizable picture.

Better designs will go beyond straight lines to include curved lines such as arcs, exponentials, parabolas, sinusoids, polynomials, spline interpolations, and so on.

Include a .wav file of the sound associated with your spectrogram picture.

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Musical signal processing with labview -- additive synthesis. OpenStax CNX. Nov 07, 2007 Download for free at http://cnx.org/content/col10479/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Musical signal processing with labview -- additive synthesis' conversation and receive update notifications?

Ask