<< Chapter < Page Chapter >> Page >

Draw a conclusion: Is a constant frequency offset a good way to transpose a melody?

Part 2

In music theory, an interval is a standard distance between two pitches. For example, if you play middle C, and then the G above that, you have played a perfect fifth . If you start with an F#, then a perfect fifth above that is a C#. The first note you play is called the fundamental .

Refer back to the piano keyboard diagram at the top of this page. Each step to an adjacent key is called a half step (also known as a semitone ).

If you play middle C (C4 on the diagram), how many half steps up do you need to go in order to play a perfect fifth interval? Enter answer on your worksheet:

If you begin on A4, which note is a perfect fifth above? Enter answer on your worksheet:

More intervals are listed below; the musical mnemonic may be helpful to hear the interval in your mind:

  • Minor 2nd - one half step above fundamental (shark theme from "Jaws" movie)
  • Major 2nd - two half steps above fundamental ("Do-Re-Mi," first two notes)
  • Major 3rd - four half steps ("Kumbaya", first two notes of phrase)
  • Perfect 4th - five half steps ("Here Comes the Bride")
  • Perfect 5th - seven half steps ("Twinkle, twinkle, little star", first two notes)
  • Major 6th - nine half steps ("My Bonnie Lies Over the Ocean," first two notes)
  • Major 7th - eleven half steps ("There's a Place for Us" from West Side Story, first two notes)
  • Octave - twelve half steps ("Somewhere Over the Rainbow," first two notes)

Listen to each of these intervals by entering the frequencies from the keyboard diagram. Remember to set your offset to zero. Also, you can silence a note by entering zero frequency. For example, if you want to hear a perfect 6th interval beginning at B3, you should use the frequencies 246.9 Hz and 415.3 Hz (G#4).

Part 3

Use C4 as the fundamental. Enter its frequency on your worksheet:

What is the frequency of a major 3rd above the fundamental? Enter its frequency on your worksheet:

What is the frequency ratio of the interval? Express your result in the form "a : 1", where "a" corresponds to the higher of the two frequencies. Enter the ratio on your worksheet:

Repeat the previous three questions using C5 as the fundamental (remember, C5 is one octave above C4). Enter the three values on your worksheet:

Try this again using A#2 as the fundamental; enter the three values on your worksheet:

Try this again using several different fundamental pitches for another type of interval.

Now, draw a conclusion: Based on what you have experienced about musical intervals so far, can you develop at least part of an explanation for why the frequencies have been selected as they have? Enter your comments on the worksheet:

Part 4

A variety of scales or tuning systems have been devised for musical instruments, some dating back several millennia. Scales include Pythagorean tuning , just-tempered , mean-tempered , well-tempered , (have you heard of Bach's "Well-Tempered Clavichord"?), and equal-tempered . For example, a just-tempered scale uses the following ratios of whole numbers for the intervals:

  • Major 2nd, 9:8 = 1.125:1
  • Major 3rd, 5:4 = _____ : 1
  • Perfect 4th, 4:3 = _____ : 1
  • Perfect 5th, 3:2 = _____ : 1
  • Major 6th, 5:3 = _____ : 1
  • Major 7th, 15:8 = _____ : 1
  • Octave, 2:1 = _____ : 1

Complete the table above to show each interval as a ratio of the form "a : 1"; enter these ratios on your worksheet:

Modify your VI so that you can enter a single fundamental frequency (in Hz) and an array of interval ratios to play. Be sure to keep the "Actual Frequencies" indicator so that you always know to what frequencies you are listening!

Listen to the scale formed by the following sequence of ratios, and use A4 (440 Hz) as the fundamental: 1, 9/8, 5/4, 4/3, 3/2, 5/3, 15/8, 2. Comment on how well this scale sounds to you (enter your comments on your worksheet):

Transpose the same scale to G4 as the fundamental, and then F4 as the fundamental. Comment on well this scale transposes to different keys (the differences may be rather subtle); enter your comments on the worksheet:

Part 5

The frequencies on the keyboard diagram above show the piano tuned using the equal-tempered scale. An equal-tempered scale sacrifices the pure whole number ratios scheme for intervals, but offers the advantage that a melody transposed to any other key will sound the same. Thus, an equal-tempered scale is a "global compromise" -- a given melody will be the same level of out of tune no matter which key is used for the fundamental. The other scales mentioned above will cause a given melody to sound quite nice in some keys, and quite out of tune in other keys.

Derive a mathematical function to calculate the frequencies used by the equal-tempered scale, i.e., given a fundamental frequency and a semitone offset, calculate the frequency. For example, when your formula is presented with the frequency 440 Hz and an offset of 2 (i.e., two semitones above concert A), it should return 493.9 Hz. Be sure to show your complete derivation process on your worksheet, and not simply the end result.


  • Your function should include a fundamental frequency "f" in Hz.
  • Your function should include a way to calculate the interval selected by the number of semitones (or half steps) above or below the fundamental frequency.
  • Your function should double the frequency when you enter 12 semitones above the fundamental (what should it do when you enter 12 semitones below the fundamental?).

Questions & Answers

What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Musical signal processing with labview -- introduction to audio and musical signals. OpenStax CNX. Nov 07, 2007 Download for free at http://cnx.org/content/col10481/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Musical signal processing with labview -- introduction to audio and musical signals' conversation and receive update notifications?