# 7.3 Properties of the dtfs

 Page 1 / 1
This module includes a table of properties of the DTFS.

## Introduction

In this module we will discuss the basic properties of the Discrete-Time Fourier Series. We will begin by refreshing your memory of our basic Fourier series equations:

$f(n)=\sum_{k=0}^{N-1} {c}_{k}e^{i{\omega }_{0}()kn}$
${c}_{k}=\frac{1}{\sqrt{N}}\sum_{n=0}^{N-1} f(n)e^{-(i\frac{2\pi }{N}kn)}$
Let $ℱ(·)$ denote the transformation from $f(n)$ to the Fourier coefficients $ℱ(f(n))=\forall k, k\in \mathbb{Z}\colon {c}_{k}$ $ℱ(·)$ maps complex valued functions to sequences of complex numbers .

## Linearity

$ℱ(·)$ is a linear transformation .

If $ℱ(f(n))={c}_{k}$ and $ℱ(g(n))={d}_{k}$ . Then $\forall \alpha , \alpha \in \mathbb{C}\colon ℱ(\alpha f(n))=\alpha {c}_{k}$ and $ℱ(f(n)+g(n))={c}_{k}+{d}_{k}$

Easy. Just linearity of integral.

$ℱ(f(n)+g(n))=\forall k, k\in \mathbb{Z}\colon \sum_{n=0}^{N} (f(n)+g(n))e^{-(i{\omega }_{0}kn)}=\forall k, k\in \mathbb{Z}\colon \frac{1}{N}\sum_{n=0}^{N} f(n)e^{-(i{\omega }_{0}kn)}+\frac{1}{N}\sum_{n=0}^{N} g(n)e^{-(i{\omega }_{0}kn)}=\forall k, k\in \mathbb{Z}\colon {c}_{k}+{d}_{k}={c}_{k}+{d}_{k}$

## Shifting

Shifting in time equals a phase shift of Fourier coefficients

$ℱ(f(n-{n}_{0}))=e^{-(i{\omega }_{0}k{n}_{0})}{c}_{k}$ if ${c}_{k}=\left|{c}_{k}\right|e^{i\angle ({c}_{k})}$ , then $\left|e^{-(i{\omega }_{0}k{n}_{0})}{c}_{k}\right|=\left|e^{-(i{\omega }_{0}k{n}_{0})}\right|\left|{c}_{k}\right|=\left|{c}_{k}\right|$ $\angle (e^{-(i{\omega }_{0}{n}_{0}k)})=\angle ({c}_{k})-{\omega }_{0}{n}_{0}k$

$ℱ(f(n-{n}_{0}))=\forall k, k\in \mathbb{Z}\colon \frac{1}{N}\sum_{n=0}^{N} f(n-{n}_{0})e^{-(i{\omega }_{0}kn)}=\forall k, k\in \mathbb{Z}\colon \frac{1}{N}\sum_{n=-{n}_{0}}^{N-{n}_{0}} f(n-{n}_{0})e^{-(i{\omega }_{0}k(n-{n}_{0}))}e^{-(i{\omega }_{0}k{n}_{0})}=\forall k, k\in \mathbb{Z}\colon \frac{1}{N}\sum_{n=-{n}_{0}}^{N-{n}_{0}} f(\stackrel{~}{n}())e^{-(i{\omega }_{0}k\stackrel{~}{n})}e^{-(i{\omega }_{0}k{n}_{0})}=\forall k, k\in \mathbb{Z}\colon e^{-(i{\omega }_{0}k\stackrel{~}{n})}{c}_{k}$

## Parseval's relation

$\sum_{n=0}^{N} \left|f(n)\right|^{2}=N\sum_{k=0}^{N-1} \left|{c}_{k}\right|^{2}$
Parseval's relation tells us that the energy of a signal is equal to the energy of its Fourier transform.
Parseval tells us that the Fourier series maps $L(0, N)^{2}$ to $l(\mathbb{Z})^{2}$ .

For $f(n)$ to have "finite energy," what do the ${c}_{k}$ do as $k\to$ ?

$\left|{c}_{k}\right|^{2}$ for $f(n)$ to have finite energy.

If $\forall k, \left|k\right|> 0\colon {c}_{k}=\frac{1}{k}$ , is $f\in L(\left[0 , N\right])^{2}$ ?

Yes, because $\left|{c}_{k}\right|^{2}=\frac{1}{k^{2}}$ , which is summable.

Now, if $\forall k, \left|k\right|> 0\colon {c}_{k}=\frac{1}{\sqrt{k}}$ , is $f\in L(\left[0 , N\right])^{2}$ ?

No, because $\left|{c}_{k}\right|^{2}=\frac{1}{k}$ , which is not summable.

The rate of decay of the Fourier series determines if $f(n)$ has finite energy .

## Even signals

• $f\left[n\right]=f\left[-n\right]$
• $\parallel {c}_{k}\parallel =\parallel {c}_{-k}\parallel$
• ${c}_{k}=\frac{1}{N}{\Sigma }_{0}^{N}\phantom{\rule{-0.166667em}{0ex}}f\left[n\right]exp\left[-ı{\omega }_{0}kn\right]$
• $=\frac{1}{N}{\Sigma }_{0}^{\frac{N}{2}}\phantom{\rule{-0.166667em}{0ex}}f\left[n\right]exp\left[-ı{\omega }_{0}kn\right]+\frac{1}{N}{\Sigma }_{\frac{N}{2}}^{N}\phantom{\rule{-0.166667em}{0ex}}f\left[n\right]exp\left[-ı{\omega }_{0}kn\right]$
• $=\frac{1}{N}{\Sigma }_{0}^{\frac{N}{2}}\phantom{\rule{-0.166667em}{0ex}}f\left[-n\right]exp\left[-ı{\omega }_{0}kn\right]+\frac{1}{N}{\Sigma }_{\frac{N}{2}}^{N}\phantom{\rule{-0.166667em}{0ex}}f\left[-n\right]exp\left[-ı{\omega }_{0}kn\right]$
• $=\frac{1}{N}{\Sigma }_{0}^{N}\phantom{\rule{-0.166667em}{0ex}}f\left[n\right]\left[exp,\left[ı{\omega }_{0}kn\right],+,exp,\left[-ı{\omega }_{0}kn\right]\right]$
• $=\frac{1}{N}{\Sigma }_{0}^{N}\phantom{\rule{-0.166667em}{0ex}}f\left[n\right]2cos\left[{\omega }_{0}kn\right]$

## Odd signals

• $f\left[n\right]=\mathrm{-f}\left[\mathrm{-n}\right]$
• ${c}_{k}={c}_{-k}$ *
• ${c}_{k}=\frac{1}{N}{\Sigma }_{0}^{N}\phantom{\rule{-0.166667em}{0ex}}f\left[n\right]exp\left[-ı{\omega }_{0}kn\right]$
• $=\frac{1}{N}{\Sigma }_{0}^{\frac{N}{2}}\phantom{\rule{-0.166667em}{0ex}}f\left[n\right]exp\left[-ı{\omega }_{0}kn\right]+\frac{1}{N}{\Sigma }_{\frac{N}{2}}^{N}\phantom{\rule{-0.166667em}{0ex}}f\left[n\right]exp\left[-ı{\omega }_{0}kn\right]$
• $=\frac{1}{N}{\Sigma }_{0}^{\frac{N}{2}}\phantom{\rule{-0.166667em}{0ex}}f\left[n\right]exp\left[-ı{\omega }_{0}kn\right]-\frac{1}{N}{\Sigma }_{\frac{N}{2}}^{N}\phantom{\rule{-0.166667em}{0ex}}f\left[-n\right]exp\left[ı{\omega }_{0}kn\right]$
• $=-\frac{1}{N}{\Sigma }_{0}^{N}\phantom{\rule{-0.166667em}{0ex}}f\left[n\right]\left[exp,\left[ı{\omega }_{0}kn\right],-,exp,\left[-ı{\omega }_{0}kn\right]\right]$
• $=-\frac{1}{N}{\Sigma }_{0}^{N}\phantom{\rule{-0.166667em}{0ex}}f\left[n\right]2ısin\left[{\omega }_{0}kn\right]$

## Real signals

• $f\left[n\right]=f$ * $\left[n\right]$
• ${c}_{k}={c}_{-k}$ *
• ${c}_{k}=\frac{1}{N}{\Sigma }_{0}^{N}\phantom{\rule{-0.166667em}{0ex}}f\left[n\right]exp\left[-ı{\omega }_{0}kn\right]$
• $=\frac{1}{N}{\Sigma }_{0}^{\frac{N}{2}}\phantom{\rule{-0.166667em}{0ex}}f\left[n\right]exp\left[-ı{\omega }_{0}kn\right]+\frac{1}{N}{\Sigma }_{\frac{N}{2}}^{N}\phantom{\rule{-0.166667em}{0ex}}f\left[n\right]exp\left[-ı{\omega }_{0}kn\right]$
• $=\frac{1}{N}{\Sigma }_{0}^{\frac{N}{2}}\phantom{\rule{-0.166667em}{0ex}}f\left[-n\right]exp\left[-ı{\omega }_{0}kn\right]+\frac{1}{N}{\Sigma }_{\frac{N}{2}}^{N}\phantom{\rule{-0.166667em}{0ex}}f\left[-n\right]exp\left[-ı{\omega }_{0}kn\right]$
• $=\frac{1}{N}{\Sigma }_{0}^{N}\phantom{\rule{-0.166667em}{0ex}}f\left[n\right]\left[exp,\left[ı{\omega }_{0}kn\right],+,exp,\left[-ı{\omega }_{0}kn\right]\right]$
• $=\frac{1}{N}{\Sigma }_{0}^{N}\phantom{\rule{-0.166667em}{0ex}}f\left[n\right]2cos\left[{\omega }_{0}kn\right]$

## Differentiation in fourier domain

$(ℱ(f(n))={c}_{k})\implies (ℱ(\frac{d f(n)}{d n}})=ik{\omega }_{0}{c}_{k})$

Since

$f(n)=\sum_{k=0}^{N} {c}_{k}e^{i{\omega }_{0}kn}$
then
$\frac{d f(n)}{d n}}=\sum_{k=0}^{N} {c}_{k}\frac{d e^{i{\omega }_{0}kn}}{d n}}=\sum_{k=0()}^{N} {c}_{k}i{\omega }_{0}ke^{i{\omega }_{0}kn}$
A differentiator attenuates the low frequencies in $f(n)$ and accentuates the high frequencies. It removes general trends and accentuates areas of sharpvariation.
A common way to mathematically measure the smoothness of a function $f(n)$ is to see how many derivatives are finite energy.
This is done by looking at the Fourier coefficients of thesignal, specifically how fast they decay as $k\to$ .If $ℱ(f(n))={c}_{k}$ and $\left|{c}_{k}\right|$ has the form $\frac{1}{k^{l}}$ , then $ℱ(\frac{d^{m}f(n)}{dn^{m}})=(ik{\omega }_{0})^{m}{c}_{k}$ and has the form $\frac{k^{m}}{k^{l}}$ .So for the ${m}^{\mathrm{th}}$ derivative to have finite energy, we need $\sum \left|\frac{k^{m}}{k^{l}}\right|^{2}$ thus $\frac{k^{m}}{k^{l}}$ decays faster than $\frac{1}{k}$ which implies that $2l-2m> 1$ or $l> \frac{2m+1}{2}$ Thus the decay rate of the Fourier series dictates smoothness.

## Integration in the fourier domain

If

$ℱ(f(n))={c}_{k}$
then
$ℱ(\sum_{\eta =0}^{n} f(\eta ))=\frac{1}{i{\omega }_{0}k}{c}_{k}$
If ${c}_{0}\neq 0$ , this expression doesn't make sense.

Integration accentuates low frequencies and attenuates high frequencies. Integrators bring out the general trends in signals and suppress short term variation(which is noise in many cases). Integrators are much nicer than differentiators.

## Fourier integration demo Interact (when online) with a Mathematica CDF demonstrating the effect of Integration in a Fourier Domain.To download, right-click and save as .cdf.

## Signal multiplication

Given a signal $f(n)$ with Fourier coefficients ${c}_{k}$ and a signal $g(n)$ with Fourier coefficients ${d}_{k}$ , we can define a new signal, $y(n)$ , where $y(n)=f(n)g(n)$ . We find that the Fourier Series representation of $y(n)$ , ${e}_{k}$ , is such that ${e}_{k}=\sum_{l=0}^{N} {c}_{l}{d}_{k-l}$ . This is to say that signal multiplication in the time domainis equivalent to discrete-time circular convolution in the frequency domain.The proof of this is as follows

${e}_{k}=\frac{1}{N}\sum_{n=0}^{N} f(n)g(n)e^{-(i{\omega }_{0}kn)}=\frac{1}{N}\sum_{n=0}^{N} \sum_{l=0}^{N} {c}_{l}e^{i{\omega }_{0}ln}g(n)e^{-(i{\omega }_{0}kn)}=\sum_{l=0}^{N} {c}_{l}\frac{1}{N}\sum_{n=0}^{N} g(n)e^{-(i{\omega }_{0}(k-l)n)}=\sum_{l=0}^{N} {c}_{l}{d}_{k-l}$

## Conclusion

Like other Fourier transforms, the DTFS has many useful properties, including linearity, equal energy in the time and frequency domains, and analogs for shifting, differentation, and integration.

 Property Signal DTFS Linearity $ax\left(n\right)+by\left(n\right)$ $aX\left(k\right)+bY\left(k\right)$ Time Shifting $x\left(n-m\right)$ $X\left(k\right){e}^{-j2\pi mk/N}$ Time Modulation $x\left(n\right){e}^{j2\pi mn/N}$ $X\left(k-m\right)$ Multiplication $x\left(n\right)y\left(n\right)$ $X\left(k\right)*Y\left(k\right)$ Circular Convolution $x\left(n\right)*y\left(n\right)$ $X\left(k\right)Y\left(K\right)$

Preparation and Applications of Nanomaterial for Drug Delivery
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
hi
Loga
Got questions? Join the online conversation and get instant answers! By Brooke Delaney By By Mike Wolf By OpenStax By Marion Cabalfin By Katherina jennife... By Inderjeet Brar By Cath Yu By By Stephen Voron