<< Chapter < Page Chapter >> Page >
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. Factoring is an essential skill for success in algebra and higher level mathematics courses. Therefore, we have taken great care in developing the student's understanding of the factorization process. The technique is consistently illustrated by displaying an empty set of parentheses and describing the thought process used to discover the terms that are to be placed inside the parentheses.The factoring scheme for special products is presented with both verbal and symbolic descriptions, since not all students can interpret symbolic descriptions alone. Two techniques, the standard "trial and error" method, and the "collect and discard" method (a method similar to the "ac" method), are presented for factoring trinomials with leading coefficients different from 1. Objectives of this module: understand more clearly the factorization process, be able to determine the greatest common factor of two or more terms.

Overview

  • Factoring Method
  • Greatest Common Factor

Factoring method

In the last two types of problems (Sections [link] and [link] ), we knew one of the factors and were able to determine the other factor through division. Suppose, now, we’re given the product without any factors. Our problem is to find the factors, if possible. This procedure and the previous two procedures are based on the distributive property.

An equation showing the product of a and the sum of b and c equal to ab plus ac. The product on the left are identified as factors and the expression on the right of the equal sign is identified as the product.

We will use the distributive property in reverse.

a b + a c product = a ( b + c ) factors

We notice that in the product, a is common to both terms. (In fact, a is a common factor of both terms.) Since a is common to both terms, we will factor it out and write

a ( )

Now we need to determine what to place inside the parentheses. This is the procedure of the previous section. Divide each term of the product by the known factor a .

a b a = b and a c a = c

Thus, b and c are the required terms of the other factor. Hence,

a b + a c = a ( b + c )

When factoring a monomial from a polynomial, we seek out factors that are not only common to each term of the polynomial, but factors that have these properties:

  1. The numerical coefficients are the largest common numerical coefficients.
  2. The variables possess the largest exponents common to all the variables.

Greatest common factor

A monomial factor that meets the above two requirements is called the greatest common factor of the polynomial.

Sample set a

Factor 3 x 18.

The greatest common factor is 3.

3 x 18 = 3 x 3 6 Factor out 3. 3 x 18 = 3 ( ) Divide each term of the product by 3. 3 x 3 = x and 18 3 = 6 ( Try to perform this division mentally . ) 3 x 18 = 3 ( x 6 )

Got questions? Get instant answers now!

Factor 9 x 3 + 18 x 2 + 27 x .

Notice that 9 x is the greatest common factor.

9 x 3 + 18 x 2 + 27 x = 9 x x 2 + 9 x 2 x + 9 x 3. Factor out 9 x . 9 x 3 + 18 x 2 + 27 x = 9 x ( ) Mentally divide 9 x into each term of the product . 9 x 3 + 18 x 2 + 27 x = 9 x ( x 2 + 2 x + 3 )

Got questions? Get instant answers now!

Factor 10 x 2 y 3 20 x y 4 35 y 5 .

Notice that 5 y 3 is the greatest common factor. Factor out 5 y 3 .

10 x 2 y 3 20 x y 4 35 y 5 = 5 y 3 ( )

Mentally divide 5 y 3 into each term of the product and place the resulting quotients inside the ( ) .

10 x 2 y 3 20 x y 4 35 y 5 = 5 y 3 ( 2 x 2 4 x y 7 y 2 )

Got questions? Get instant answers now!

Factor 12 x 5 + 8 x 3 4 x 2 .

We see that the greatest common factor is 4 x 2 .

12 x 5 + 8 x 3 4 x 2 = 4 x 2 ( )

Mentally dividing 4 x 2 into each term of the product, we get

12 x 5 + 8 x 3 4 x 2 = 4 x 2 ( 3 x 3 2 x + 1 )

Got questions? Get instant answers now!

Practice set a

Factor 4 x 48.

4 ( x 12 )

Got questions? Get instant answers now!

Factor 6 y 3 + 24 y 2 + 36 y .

6 y ( y 2 + 4 y + 6 )

Got questions? Get instant answers now!

Factor 10 a 5 b 4 14 a 4 b 5 8 b 6 .

2 b 4 ( 5 a 5 7 a 4 b 4 b 2 )

Got questions? Get instant answers now!

Factor 14 m 4 + 28 m 2 7 m .

7 m ( 2 m 3 4 m + 1 )

Got questions? Get instant answers now!

Consider this problem: factor A x + A y . Surely, A x + A y = A ( x + y ) . We know from the very beginning of our study of algebra that letters represent single quantities. We also know that a quantity occurring within a set of parentheses is to be considered as a single quantity. Suppose that the letter A is representing the quantity ( a + b ) . Then we have

A x + A y = A ( x + y )

( a + b ) x + ( a + b ) y = ( a + b ) ( x + y )

When we observe the expression

( a + b ) x + ( a + b ) y

we notice that ( a + b ) is common to both terms. Since it is common, we factor it out.

( a + b ) ( )

As usual, we determine what to place inside the parentheses by dividing each term of the product by ( a + b ) .

( a + b ) x ( a + b ) = x and ( a + b ) y ( a + b ) = y

Thus, we get

( a + b ) x + ( a + b ) y = ( a + b ) ( x + y )

This is a forerunner of the factoring that will be done in Section 5.4.

Sample set b

Factor ( x 7 ) a + ( x 7 ) b .

Notice that ( x 7 ) is the greatest common factor. Factor out ( x 7 ) .

( x 7 ) a + ( x 7 ) b = ( x 7 ) ( ) Then , ( x 7 ) a ( x 7 ) = a and ( x 7 ) b ( x 7 ) = b . ( x 7 ) a + ( x 7 ) b = ( x 7 ) ( a + b )

Got questions? Get instant answers now!

Factor 3 x 2 ( x + 1 ) 5 x ( x + 1 ) .

Notice that x and ( x + 1 ) are common to both terms. Factor them out. We’ll perform this factorization by letting A = x ( x + 1 ) . Then we have

3 x A 5 A = A ( 3 x 5 ) But A = x ( x + 1 ) , so 3 x 2 ( x + 1 ) 5 x ( x + 1 ) = x ( x + 1 ) ( 3 x 5 )

Got questions? Get instant answers now!

Practice set b

Factor ( y + 4 ) a + ( y + 4 ) b .

( y + 4 ) ( a + b )

Got questions? Get instant answers now!

Factor 8 m 3 ( n 4 ) 6 m 2 ( n 4 ) .

2 m 2 ( n 4 ) ( 4 m 3 )

Got questions? Get instant answers now!

Exercises

For the following problems, factor the polynomials.

4 x 6

2 ( 2 x 3 )

Got questions? Get instant answers now!

21 y 28

7 ( 3 y 4 )

Got questions? Get instant answers now!

12 x 2 + 18 x

6 x ( 2 x + 3 )

Got questions? Get instant answers now!

8 y 2 + 18

2 ( 4 y 2 + 9 )

Got questions? Get instant answers now!

3 y 2 6

3 ( y 2 2 )

Got questions? Get instant answers now!

6 y 2 6 y

6 y ( y 1 )

Got questions? Get instant answers now!

5 a 2 x 2 + 10 x

5 x ( a 2 x + 2 )

Got questions? Get instant answers now!

10 x 2 + 5 x 15

5 ( 2 x 2 + x 3 )

Got questions? Get instant answers now!

15 y 3 24 y + 9

3 ( 5 y 3 8 y + 3 )

Got questions? Get instant answers now!

b y 3 + b y 2 + b y + b

b ( y 3 + y 2 + y + 1 )

Got questions? Get instant answers now!

9 x 2 + 6 x y + 4 x

x ( 9 x + 6 y + 4 )

Got questions? Get instant answers now!

30 a 2 b 2 + 40 a 2 b 2 + 50 a 2 b 2

Got questions? Get instant answers now!

13 x 2 y 5 c 26 x 2 y 5 c 39 x 2 y 5

13 x 2 y 5 ( c 3 )

Got questions? Get instant answers now!

4 x 2 12 x 8

Got questions? Get instant answers now!

6 y 3 8 y 2 14 y + 10

2 ( 3 y 3 + 4 y 2 + 7 y 5 )

Got questions? Get instant answers now!

A x A y

A ( x y )

Got questions? Get instant answers now!

( x + 4 ) b + ( x + 4 ) c

Got questions? Get instant answers now!

( x 9 ) a + ( x 9 ) b

( x 9 ) ( a + b )

Got questions? Get instant answers now!

( 2 x + 7 ) a + ( 2 x + 7 ) b

Got questions? Get instant answers now!

( 9 a b ) w ( 9 a b ) x

( 9 a b ) ( w x )

Got questions? Get instant answers now!

( 5 v ) X + ( 5 v ) Y

Got questions? Get instant answers now!

3 x 5 y 4 12 x 3 y 4 + 27 x 5 y 3 6 x 2 y 6

3 x 2 y 3 ( x 3 y 4 x y + 9 x 3 2 y 3 )

Got questions? Get instant answers now!

8 a 3 b 15 + 24 a 2 b 14 + 48 a 3 b 6 20 a 3 b 7 + 80 a 4 b 6 4 a 3 b 7 + 4 a 2 b

Got questions? Get instant answers now!

8 x 3 y 2 3 x 3 y 2 + 16 x 4 y 3 + 2 x 2 y

x 2 y ( 11 x y 16 x 2 y 2 2 )

Got questions? Get instant answers now!

Exercises for review

( [link] ) A quantity plus 21 % more of that quantity is 26.25. What is the original quantity?

Got questions? Get instant answers now!

( [link] ) Solve the equation 6 ( t 1 ) = 4 ( 5 s ) if s = 2.

t = 3

Got questions? Get instant answers now!

( [link] ) Given that 4 a 3 is a factor of 8 a 3 12 a 2 , find the other factor.

Got questions? Get instant answers now!

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary algebra. OpenStax CNX. May 08, 2009 Download for free at http://cnx.org/content/col10614/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask