<< Chapter < Page Chapter >> Page >

What is digital signal processing?

To understand what is Digital Signal Processing (DSP) let’s examine what does each of its words mean.“ Signal ”is any physical quantity that carries information.“ Processing ”is a series of steps or operations to achieve a particular end. It is easy to see that Signal Processing is used everywhere to extract information from signals or to convert information-carrying signals from one form to another. For example, our brain and ears take input speech signals, and then process and convert them intomeaningful words. Finally, the word“ Digital ”in Digital Signal Processing means that the process is done by computers, microprocessors, or logic circuits.

The field DSP has expanded significantly over that last few decades as a result of rapid developments in computertechnology and integrated-circuit fabrication. Consequently, DSP has played an increasingly important role in a wide range ofdisciplines in science and technology. Research and development in DSP are driving advancements in many high-tech areas includingtelecommunications, multimedia, medical and scientific imaging, and human-computer interaction.

To illustrate the digital revolution and the impact of DSP, consider the development of digital cameras.Traditional film cameras mainly rely on physical properties of the optical lens, where higher quality requires bigger and largersystem, to obtain good images. When digital cameras were first introduced, their quality were inferior compared to film cameras.But as microprocessors become more powerful, more sophisticated DSP algorithms have been developed for digital cameras to correctoptical defects and improve the final image quality. Thanks to these developments, the quality of consumer-grade digital camerashas now surpassed the equivalence in film cameras. As further developments for digital cameras attached to cell phones(cameraphones), where due to small size requirements of the lenses, these cameras rely on DSP power to provide good images.Essentially, digital camera technology uses computational power to overcome physical limitations. We can find the similar trendhappens in many other applications of DSP such as digital communications, digital imaging, digital television, and soon.

In summary, DSP has foundations on Mathematics, Physics, and Computer Science, and can provide the keyenabling technology in numerous applications.

Overview of key concepts in digital signal processing

The two main characters in DSP are signals and systems . A signal is defined as any physical quantity that varies with one or more independent variables such as time(one-dimensional signal), or space (2-D or 3-D signal). Signals exist in several types. In the real-world, most of signals are continuous-time or analog signals that have values continuously at every value of time. To be processed by a computer, acontinuous-time signal has to be first sampled in time into a discrete-time signal so that its values at a discrete set of time instants can be stored in computer memorylocations. Furthermore, in order to be processed by logic circuits, these signal values have to be quantized in to a set of discrete values, and the final result is called a digital signal . When the quantization effect is ignored, the terms discrete-time signal and digital signal canbe used interchangeability.

In signal processing, a system is defined as a process whose input and output are signals. An important class of systems is the class of linear time-invariant (or shift-invariant ) systems . These systems have a remarkable property is that each of them can be completelycharacterized by an impulse response function (sometimes is also called as point spread function ), and the system is defined by a convolution (also referred to as a filtering ) operation. Thus, a linear time-invariant system is equivalent to a (linear) filter . Linear time-invariant systems are classified into two types, those that have finite-duration impulse response (FIR) and those that have an infinite-duration impulse response (IIR) .

A signal can be viewed as a vector in a vector space . Thus, linear algebra provides a powerful framework to study signals and linear systems. In particular, given a vectorspace, each signal can be represented (or expanded) as a linear combination of elementary signals . The most important signal expansions are provided by the Fourier transforms . The Fourier transforms, as with general transforms, are often used effectively to transform aproblem from one domain to another domain where it is much easier to solve or analyze. The two domains of a Fourier transform havephysical meaning and are called the time domain and the frequency domain .

Sampling , or the conversion of continuous-domain real-life signals to discrete numbers that can be processed by computers, is the essential bridge between the analog and thedigital worlds. It is important to understand the connections between signals and systems in the real world and inside acomputer. These connections are convenient to analyze in the frequency domain. Moreover, many signals and systems are specifiedby their frequency characteristics .

Because any linear time-invariant system can be characterized as a filter , the design of such systems boils down to the design the associated filters. Typically, in the filter design process, we determine the coefficients of an FIR or IIR filter that closely approximates thedesired frequency response specifications. Together with Fourier transforms, the z-transform provides an effective tool to analyze and design digital filters.

In many applications, signals are conveniently described via statistical models as random signals . It is remarkable that optimum linear filters (in the sense of minimum mean-square error ), so called Wiener filters , can be determined using only second-order statistics ( autocorrelation and crosscorrelation functions) of a stationary process . When these statistics cannot be specified beforehand or change over time, we can employ adaptive filters , where the filter coefficients are adapted to the signal statistics. The most popularalgorithm to adaptively adjust the filter coefficients is the least-mean square (LMS) algorithm.

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Fundamentals of signal processing. OpenStax CNX. Nov 26, 2012 Download for free at http://cnx.org/content/col10360/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of signal processing' conversation and receive update notifications?

Ask