# 3.5 Multiplication and division of signed numbers

 Page 1 / 1
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. The basic operations with real numbers are presented in this chapter. The concept of absolute value is discussed both geometrically and symbolically. The geometric presentation offers a visual understanding of the meaning of |x|. The symbolic presentation includes a literal explanation of how to use the definition. Negative exponents are developed, using reciprocals and the rules of exponents the student has already learned. Scientific notation is also included, using unique and real-life examples.Objectives of this module: be able to multiply and divide signed numbers.

## Overview

• Multiplication of Signed Numbers
• Division of Signed Numbers

## Multiplication of signed numbers

Let us consider first the product of two positive numbers.

Multiply: $3\cdot 5$ .
$3\cdot 5$ means $5+5+5=15$ .

This suggests that

$\left(\text{positive}\text{\hspace{0.17em}}\text{number}\right)\cdot \left(\text{positive}\text{\hspace{0.17em}}\text{number}\right)=\text{positive}\text{\hspace{0.17em}}\text{number}$ .

More briefly, $\left(+\right)\left(+\right)=+$ .

Now consider the product of a positive number and a negative number.

Multiply: $\left(3\right)\left(-5\right)$ .
$\left(3\right)\left(-5\right)$ means $\left(-5\right)+\left(-5\right)+\left(-5\right)=-15$ .

This suggests that

$\left(\text{positive}\text{\hspace{0.17em}}\text{number}\right)\cdot \left(\text{negative}\text{\hspace{0.17em}}\text{number}\right)=\text{negative}\text{\hspace{0.17em}}\text{number}$

More briefly, $\left(+\right)\left(-\right)=-$ .

By the commutative property of multiplication, we get

$\left(\text{negative}\text{\hspace{0.17em}}\text{number}\right)\cdot \left(\text{positive}\text{\hspace{0.17em}}\text{number}\right)=\text{negative}\text{\hspace{0.17em}}\text{number}$

More briefly, $\left(-\right)\left(+\right)=-$ .

The sign of the product of two negative numbers can be determined using the following illustration: Multiply $-2$ by, respectively, $4,\text{\hspace{0.17em}}3,\text{\hspace{0.17em}}2,\text{\hspace{0.17em}}1,\text{\hspace{0.17em}}0,\text{\hspace{0.17em}}-1,\text{\hspace{0.17em}}-2,\text{\hspace{0.17em}}-3,\text{\hspace{0.17em}}-4$ . Notice that when the multiplier decreases by 1, the product increases by 2.

$\begin{array}{ll}\begin{array}{l}4\left(-2\right)=-8\\ 3\left(-2\right)=-6\\ 2\left(-2\right)=-4\\ 1\left(-2\right)=-2\end{array}\right\}\to \hfill & \text{As}\text{\hspace{0.17em}}\text{we}\text{\hspace{0.17em}}\text{know},\text{\hspace{0.17em}}\left(+\right)\left(-\right)=-.\hfill \\ 0\left(-2\right)=0\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\to \hfill & \text{As}\text{\hspace{0.17em}}\text{we}\text{\hspace{0.17em}}\text{know},0\cdot \left(\text{any}\text{\hspace{0.17em}}\text{number}\right)=0.\hfill \end{array}$

$\begin{array}{ll}\begin{array}{l}-1\left(-2\right)=2\\ -2\left(-2\right)=4\\ -3\left(-2\right)=6\\ -4\left(-2\right)=8\end{array}\right\}\to \hfill & \text{This}\text{\hspace{0.17em}}\text{pattern}\text{\hspace{0.17em}}\text{suggests}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left(-\right)\left(-\right)=+.\hfill \end{array}$

We have the following rules for multiplying signed numbers.

## Rules for multiplying signed numbers

To multiply two real numbers that have

1. the same sign , multiply their absolute values. The product is positive.
$\begin{array}{c}\left(+\right)\left(+\right)=+\\ \left(-\right)\left(-\right)=+\end{array}$
2. opposite signs , multiply their absolute values. The product is negative.
$\begin{array}{c}\left(+\right)\left(-\right)=-\\ \left(-\right)\left(+\right)=-\end{array}$

## Sample set a

Find the following products.

$8\cdot 6$

$\begin{array}{ll}\hfill & \text{Multiply}\text{\hspace{0.17em}}\text{these}\text{\hspace{0.17em}}\text{absolute}\text{\hspace{0.17em}}\text{values}\text{.}\hfill \\ \begin{array}{l}|8|=8\\ |6|=6\end{array}\right\}\hfill & 8\cdot 6=48\hfill \\ \hfill & \text{Since}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{numbers}\text{\hspace{0.17em}}\text{have}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{same}\text{\hspace{0.17em}}\text{sign,}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{product}\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{positive}\text{.}\hfill \\ 8\cdot 6=+48\hfill & \text{​}\text{​}\text{or}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}8\cdot 6=48\hfill \end{array}$

$\left(-8\right)\left(-6\right)$

$\begin{array}{ll}\hfill & \text{Multiply}\text{\hspace{0.17em}}\text{these}\text{\hspace{0.17em}}\text{absolute}\text{\hspace{0.17em}}\text{values}\text{.}\hfill \\ \begin{array}{l}|-8|=8\\ |-6|=6\end{array}\right\}\hfill & 8\cdot 6=48\hfill \\ \hfill & \text{Since}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{numbers}\text{\hspace{0.17em}}\text{have}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{same}\text{\hspace{0.17em}}\text{sign,}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{product}\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{positive}\text{.}\hfill \\ \left(-8\right)\left(-6\right)=+48\hfill & \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{or}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left(-8\right)\left(-6\right)=48\hfill \end{array}$

$\left(-4\right)\left(7\right)$

$\begin{array}{ll}\hfill & \text{Multiply}\text{\hspace{0.17em}}\text{these}\text{\hspace{0.17em}}\text{absolute}\text{\hspace{0.17em}}\text{values}\text{.}\hfill \\ \begin{array}{cc}|-4|\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}& =4\\ |7|& =7\end{array}\right\}\hfill & 4\cdot 7=28\hfill \\ \hfill & \text{Since}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{numbers}\text{\hspace{0.17em}}\text{have}\text{\hspace{0.17em}}\text{opposite}\text{\hspace{0.17em}}\text{signs,}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{product}\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{negative}\text{.}\hfill \\ \left(-4\right)\left(7\right)=-28\hfill & \hfill \end{array}$

$6\left(-3\right)$

$\begin{array}{ll}\hfill & \text{Multiply}\text{\hspace{0.17em}}\text{these}\text{\hspace{0.17em}}\text{absolute}\text{\hspace{0.17em}}\text{values}\text{.}\hfill \\ \begin{array}{rr}\hfill |6|\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}& \hfill =6\\ \hfill |-3|& \hfill =3\end{array}\right\}\hfill & 6\cdot 3=18\hfill \\ \hfill & \text{Since}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{numbers}\text{\hspace{0.17em}}\text{have}\text{\hspace{0.17em}}\text{opposite}\text{\hspace{0.17em}}\text{signs,}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{product}\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{negative}\text{.}\hfill \\ 6\left(-3\right)=-18\hfill & \hfill \end{array}$

## Practice set a

Find the following products.

$3\left(-8\right)$

$-24$

$4\left(16\right)$

64

$\left(-6\right)\left(-5\right)$

30

$\left(-7\right)\left(-2\right)$

14

$\left(-1\right)\left(4\right)$

$-4$

$\left(-7\right)7$

$-49$

## Division of signed numbers

We can determine the sign pattern for division by relating division to multiplication. Division is defined in terms of multiplication in the following way.

If $b\cdot c=a$ , then $\frac{a}{b}=c,\text{\hspace{0.17em}}b\ne 0$ .

For example, since $3\cdot 4=12$ , it follows that $\frac{12}{3}=4$ .

Notice the pattern:

Since $\underset{b\cdot c=a}{\underbrace{3\cdot 4}}=12$ , it follows that $\underset{\frac{a}{b}=c}{\underbrace{\frac{12}{3}}}=4$

The sign pattern for division follows from the sign pattern for multiplication.

1. Since $\underset{b\cdot c=a}{\underbrace{\left(+\right)\left(+\right)}}=+$ , it follows that $\underset{\frac{a}{b}=c}{\underbrace{\frac{\left(+\right)}{\left(+\right)}}}=+$ , that is,

$\frac{\left(\text{positive}\text{\hspace{0.17em}}\text{number}\right)}{\left(\text{positive}\text{\hspace{0.17em}}\text{number}\right)}=\text{positive}\text{\hspace{0.17em}}\text{number}$

2. Since $\underset{b\cdot c=a}{\underbrace{\left(-\right)\left(-\right)}}=+$ , it follows that $\underset{\frac{a}{b}=c}{\underbrace{\frac{\left(+\right)}{\left(-\right)}}}=-$ , that is,

$\frac{\left(\text{positive}\text{\hspace{0.17em}}\text{number}\right)}{\left(\text{negative}\text{\hspace{0.17em}}\text{number}\right)}=\text{negative}\text{\hspace{0.17em}}\text{number}$

3. Since $\underset{b\cdot c=a}{\underbrace{\left(+\right)\left(-\right)}}=-$ , it follows that $\underset{\frac{a}{b}=c}{\underbrace{\frac{\left(-\right)}{\left(+\right)}}}=-$ , that is,

$\frac{\left(\text{negative}\text{​}\text{\hspace{0.17em}}\text{number}\right)}{\left(\text{positive}\text{\hspace{0.17em}}\text{number}\right)}=\text{negative}\text{\hspace{0.17em}}\text{number}$

4. Since $\underset{b\cdot c=a}{\underbrace{\left(-\right)\left(+\right)}}=-$ , it follows that $\underset{\frac{a}{b}=c}{\underbrace{\frac{\left(-\right)}{\left(-\right)}}}=+$ , that is

$\frac{\left(\text{negative}\text{\hspace{0.17em}}\text{number}\right)}{\left(\text{negative}\text{\hspace{0.17em}}\text{number}\right)}=\text{positive}\text{\hspace{0.17em}}\text{number}$

We have the following rules for dividing signed numbers.

## Rules for dividing signed numbers

To divide two real numbers that have

1. the same sign , divide their absolute values. The quotient is positive.
$\begin{array}{cc}\frac{\left(+\right)}{\left(+\right)}=+& \frac{\left(-\right)}{\left(-\right)}=+\end{array}$
2. opposite signs , divide their absolute values. The quotient is negative.
$\begin{array}{cc}\frac{\left(-\right)}{\left(+\right)}=-& \frac{\left(+\right)}{\left(-\right)}=-\end{array}$

## Sample set b

Find the following quotients.

$\frac{-10}{2}$

$\begin{array}{ll}\begin{array}{ll}|-10|=\hfill & 10\hfill \\ \hfill |2|=& \hfill 2\end{array}\right\}\hfill & \text{Divide}\text{\hspace{0.17em}}\text{these}\text{\hspace{0.17em}}\text{absolute}\text{\hspace{0.17em}}\text{values}.\hfill \\ \hfill & \frac{10}{2}=5\hfill \\ \frac{-10}{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}=-5\hfill & \text{Since}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{numbers}\text{\hspace{0.17em}}\text{have}\text{\hspace{0.17em}}\text{opposite}\text{\hspace{0.17em}}\text{signs,}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{quotient}\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{negative}\text{.}\hfill \end{array}$

$\frac{-35}{-7}$

$\begin{array}{ll}\begin{array}{ll}|-35|=\hfill & 35\hfill \\ \hfill |-7|=& \hfill 7\end{array}\right\}\hfill & \text{Divide}\text{\hspace{0.17em}}\text{these}\text{\hspace{0.17em}}\text{absolute}\text{\hspace{0.17em}}\text{values}.\hfill \\ \hfill & \frac{35}{7}=5\hfill \\ \frac{-35}{-7}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}=5\hfill & \text{Since}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{numbers}\text{\hspace{0.17em}}\text{have}\text{\hspace{0.17em}}\text{same}\text{\hspace{0.17em}}\text{signs,}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{quotient}\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{positive}\text{.}\hfill \end{array}$

$\frac{18}{-9}$

$\begin{array}{ll}\begin{array}{ll}|18|=\hfill & 18\hfill \\ |-9|=\hfill & 9\hfill \end{array}\right\}\hfill & \text{Divide}\text{\hspace{0.17em}}\text{these}\text{\hspace{0.17em}}\text{absolute}\text{\hspace{0.17em}}\text{values}.\hfill \\ \hfill & \frac{18}{9}=2\hfill \\ \frac{18}{-9}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}=-2\hfill & \text{Since}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{numbers}\text{\hspace{0.17em}}\text{have}\text{\hspace{0.17em}}\text{opposite}\text{\hspace{0.17em}}\text{signs,}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{quotient}\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{negative}\text{.}\hfill \end{array}$

## Practice set b

Find the following quotients.

$\frac{-24}{-6}$

4

$\frac{30}{-5}$

$-6$

$\frac{-54}{27}$

$-2$

$\frac{51}{17}$

3

## Sample set c

Find the value of $\frac{-6\left(4-7\right)-2\left(8-9\right)}{-\left(4+1\right)+1}$ .

Using the order of operations and what we know about signed numbers, we get

$\begin{array}{lll}\frac{-6\left(4-7\right)-2\left(8-9\right)}{-\left(4+1\right)+1}\hfill & =\hfill & \frac{-6\left(-3\right)-2\left(-1\right)}{-\left(5\right)+1}\hfill \\ \hfill & =\hfill & \frac{18+2}{-5+1}\hfill \\ \hfill & =\hfill & \frac{20}{-4}\hfill \\ \hfill & =\hfill & -5\hfill \end{array}$

Find the value of $z=\frac{x-u}{s}$ if $x=57,\text{\hspace{0.17em}}u=51,\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}s=2$ .

Substituting these values we get

$z=\frac{57-51}{2}=\frac{6}{2}=3$

## Practice set c

Find the value of $\frac{-7\left(4-8\right)+2\left(1-11\right)}{-5\left(1-6\right)-17}$ .

1

Find the value of $P=\frac{n\left(n-3\right)}{2n}$ , if $n=5$ .

1

## Exercises

Find the value of each of the following expressions.

$\left(-2\right)\left(-8\right)$

16

$\left(-3\right)\left(-9\right)$

$\left(-4\right)\left(-8\right)$

32

$\left(-5\right)\left(-2\right)$

$\left(-6\right)\left(-9\right)$

54

$\left(-3\right)\left(-11\right)$

$\left(-8\right)\left(-4\right)$

32

$\left(-1\right)\left(-6\right)$

$\left(3\right)\left(-12\right)$

$-36$

$\left(4\right)\left(-18\right)$

$8\left(-4\right)$

$-32$

$5\left(-6\right)$

$9\left(-2\right)$

$-18$

$7\left(-8\right)$

$\left(-6\right)4$

$-24$

$\left(-7\right)6$

$\left(-10\right)9$

$-90$

$\left(-4\right)12$

$\left(10\right)\left(-6\right)$

$-60$

$\left(-6\right)\left(4\right)$

$\left(-2\right)\left(6\right)$

$-12$

$\left(-8\right)\left(7\right)$

$\frac{21}{7}$

3

$\frac{42}{6}$

$\frac{-39}{3}$

$-13$

$\frac{-20}{10}$

$\frac{-45}{-5}$

9

$\frac{-16}{-8}$

$\frac{25}{-5}$

$-5$

$\frac{36}{-4}$

$8-\left(-3\right)$

11

$14-\left(-20\right)$

$20-\left(-8\right)$

28

$-4-\left(-1\right)$

$0-4$

$-4$

$0-\left(-1\right)$

$-6+1-7$

$-12$

$15-12-20$

$1-6-7+8$

$-4$

$2+7-10+2$

$3\left(4-6\right)$

$-6$

$8\left(5-12\right)$

$-3\left(1-6\right)$

15

$-8\left(4-12\right)+2$

$-4\left(1-8\right)+3\left(10-3\right)$

49

$-9\left(0-2\right)+4\left(8-9\right)+0\left(-3\right)$

$6\left(-2-9\right)-6\left(2+9\right)+4\left(-1-1\right)$

$-140$

$\frac{3\left(4+1\right)-2\left(5\right)}{-2}$

$\frac{4\left(8+1\right)-3\left(-2\right)}{-4-2}$

$-7$

$\frac{-1\left(3+2\right)+5}{-1}$

$\frac{-3\left(4-2\right)+\left(-3\right)\left(-6\right)}{-4}$

$-3$

$-1\left(4+2\right)$

$-1\left(6-1\right)$

$-5$

$-\left(8+21\right)$

$-\left(8-21\right)$

13

$-\left(10-6\right)$

$-\left(5-2\right)$

$-3$

$-\left(7-11\right)$

$-\left(8-12\right)$

4

$-3\left[\left(-1+6\right)-\left(2-7\right)\right]$

$-2\left[\left(4-8\right)-\left(5-11\right)\right]$

$-4$

$-5\left[\left(-1+5\right)+\left(6-8\right)\right]$

$-\left[\left(4-9\right)+\left(-2-8\right)\right]$

15

$-3\left[-2\left(1-5\right)-3\left(-2+6\right)\right]$

$-2\left[-5\left(-10+11\right)-2\left(5-7\right)\right]$

2

$\begin{array}{cc}P=R-C.& \text{Find}\text{\hspace{0.17em}}P\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}R=2000\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}C=2500.\end{array}$

$\begin{array}{cc}z=\frac{x-u}{s}.& \text{Find}\text{\hspace{0.17em}}z\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}x=23,\text{\hspace{0.17em}}u=25,\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}s=1.\end{array}$

$-2$

$\begin{array}{cc}z=\frac{x-u}{s}.& \text{Find}\text{\hspace{0.17em}}z\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}x=410,\text{\hspace{0.17em}}u=430,\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}s=2.5.\end{array}$

$\begin{array}{cc}m=\frac{2s+1}{T}.& \text{Find}\text{\hspace{0.17em}}m\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}s=-8\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}T=5.\end{array}$

$-3$

$\begin{array}{cc}m=\frac{2s+1}{T}.& \text{Find}\text{\hspace{0.17em}}m\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}s=-10\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}T=-5.\end{array}$

$\begin{array}{cc}F=\left({p}_{1}-{p}_{2}\right){r}^{4}\cdot 9.& \text{Find}\text{\hspace{0.17em}}F\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}{p}_{1}=10,\text{\hspace{0.17em}}\text{\hspace{0.17em}}{p}_{2}=8,r=3.\end{array}$

1458

$\begin{array}{cc}F=\left({p}_{1}-{p}_{2}\right){r}^{4}\cdot 9.& \text{Find}\text{\hspace{0.17em}}F\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}{p}_{1}=12,\text{\hspace{0.17em}}\text{\hspace{0.17em}}{p}_{2}=7,r=2.\end{array}$

$\begin{array}{cc}P=n\left(n-1\right)\left(n-2\right).& \text{Find}\text{\hspace{0.17em}}P\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}n=-4.\end{array}$

$-120$

$\begin{array}{cc}P=n\left(n-1\right)\left(n-2\right)\left(n-3\right).& \text{Find}\text{\hspace{0.17em}}P\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}n=-5.\end{array}$

$\begin{array}{cc}P=\frac{n\left(n-2\right)\left(n-4\right)}{2n}.& \text{Find}\text{\hspace{0.17em}}P\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}n=-6.\end{array}$

40

## Exercises for review

( [link] ) What natural numbers can replace $x$ so that the statement $-4 is true?

( [link] ) Simplify $\frac{{\left(x+2y\right)}^{5}{\left(3x-1\right)}^{7}}{{\left(x+2y\right)}^{3}{\left(3x-1\right)}^{6}}$ .

${\left(x+2y\right)}^{2}\left(3x-1\right)$

( [link] ) Simplify ${\left({x}^{n}{y}^{3t}\right)}^{5}$ .

( [link] ) Find the sum. $-6+\left(-5\right)$ .

$-11$

( [link] ) Find the difference. $-2-\left(-8\right)$ .

#### Questions & Answers

what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Please keep in mind that it's not allowed to promote any social groups (whatsapp, facebook, etc...), exchange phone numbers, email addresses or ask for personal information on QuizOver's platform.