<< Chapter < Page Chapter >> Page >
u x x u ( x + d x , t ) - 2 u ( x , t ) + u ( x - d x , t ) d x 2

These approximations may be substituted into our original partial differential equation in order to solve for u ( x , t ) .

The second finite difference method used to solve the wave equation is the trapezoidal approximation method, where we have the system of equations

u u t t = 0 I x x - c ( t ) δ ( x - x c ) u u t + 0 b ( t ) δ ( x - x b )

which we will denote as

V ' ( t ) = A ( t ) V ( t ) + B ( t )

where I represents the identity matrix. The x x operator is a tridiagonal matrix with -2 along the diagonal and ones along the superdiagonal and subdiagonal. The approximating integral equation

( j - 1 ) d t j d t V ' ( t ) d t = ( j - 1 ) d t j d t ( A ( t ) V ( t ) + B ( t ) ) d t

is solved to reveal a solution for u ( j d t ) . The trapezoidal integration method turns out to be the more accurate of the two solution methods, since its error is less than the error of the forward Euler method. Real values for the string's tension, density, and length were used to evaluate the solution for the trapezoidal method, but gave us unintelligible results when used for the forward Euler method. Both methods were used to evaluate the solution using arbitrary values.

Optimization

With all the preliminary work established, we can move on to the optimization problem. We investigated two objective functions for optimization. The first objective function considered was the following

J ( c ( t ) ) = 0 ( u ( x , T ; c ( t ) ) - u 0 ( x , T ) ) 2 d x .

Here a suitable time T is preordained. It is legitimate to do this since damping should not affect the periodic details of the waveform. The u ( x , T ) is solved with the given c ( t ) and fitted to u 0 ( x , T ) = sin ( 4 π x ) . We parameterize

c ( t ) = e - c 1 t - e - c 2 t

which acts at one point on the string with a shape similar to the following.

It is important also that c 1 < c 2 to guarantee the above shape. Our control problem then, is to

min c 1 , c 2 0 ( u ( x , T ; c ( t ) ) - u 0 ( x , T ) ) 2 d x

subject to u ( x , T ; c ( t ) ) solving our wave equation with the same initial and boundary conditions. There is a scaling issue since u ( x , T ) is small (on the order of 10 - 5 ) at times. To correct this we scale our target u 0 so that the two waveforms are comparable before we run the optimization. Normalizing u instead, would be cumbersome since the maximum amplitude depends on time. To expedite the optimizer, we supply the gradient of our objective

J ( c ( t ) ) = ( J ( c ( t ) ) c 1 , J ( c ( t ) ) c 2 ) .

The equations for the partial derivatives are as follows.

J ( c ( t ) ) c 1 = 2 0 ( u ( x , T ; c ( t ) ) - u 0 ( x , T ) ) ( u ( x , T , c ( t ) ) c 1 ) d x ,
J ( c ( t ) ) c 2 = 2 0 ( u ( x , T ; c ( t ) ) - u 0 ( x , T ) ) ( u ( x , T , c ( t ) ) c 2 ) d x

The inner partial derivatives will be approximated by the same finite difference method we used above.

One of the main difficulties with this objective function is that it requires a T to be found beforehand and thus we can only optimize with respect to our spacial dimension. Optimizing over both space and time would rid us of needing to find a good T but complicates our objective function and retards our optimizer. Another concern with this objective is that it takes into account the sign of the target waveform, but whether the waveform is sin ( x ) or - sin ( x ) is no matter to the musician. Along the same lines we have the scaling difficulty. Another objective function we have explored is the following energy minimization problem. We note that u ( x , t ) can be represented as a combination of sinusoids. For a given T we have

u ( x , T ) = n = 1 N u n sin ( 2 n π x ) .

Here each u n represents the nth Fourier coefficient that corresponds to the expression of the nth mode in the total wave. Since we are interested in expressing only the fourth mode, our optimization problem will try to minimize all other modes

min c 1 , c 2 F ( c ( t ) ) = 0 T f i n n = 1 , n 4 10 0 ( u ( x , t ; c ( t ) ) sin n π x d x 2 d t

subject to our wave equation with the same conditions. We decide on clearing up the first ten modes (except the fourth) to ensure that we are left with a waveform closest to our target. Like before we supply the gradient.

F ( c ( t ) ) c 1 = 2 0 T f i n n = 1 , n 4 10 0 ( u ( x , t ; c ( t ) ) sin n π x u ( x , t , c ( t ) ) c 1 d x d t ,
F ( c ( t ) ) c 2 = 2 0 T f i n n = 1 , n 4 10 0 ( u ( x , t ; c ( t ) ) sin n π x u ( x , t , c ( t ) ) c 2 d x d t .

This objective function solves the sign and amplitude problems of the first. Additionally we are now optimizing over time so we need not specify a T . One may wish to reset the bounds of the time integral through a different interval.

Results

This is the result of our optimizer given a certain driving force b ( t ) using our first objective function.

This is the result of our optimizer at a certain time using the energy minimization objective. Since we optimized over space and time, we express this as a three dimensional plot.

For the energy minimization objective function using multiple dampings, we have this result.

Comparatively, the values of the objective function for single and multiple dampings are on the same order of magnitude, with the value for the single dampings being slightly smaller. Therefore the optimization process for a single damping is more effective, but not by much.

Acknowledgments

We would like to give a big thanks to Dr. Steve Cox for his guidance and support throughout the course of the project. This paper describes work completed with the support of the NSF.

Appendix

All of the codes used in this project are available on our website at

http://www.owlnet.rice.edu/ mlg6/strings/.

References

  1. Bamerger, A., J. Rauch and M. Taylor. A model for harmonics on stringed instruments . Arch. Rational Mech. Anal. 79(1982) 267-290.
  2. Cheney, E. W., and David Kincaid. Numerical Mathematics and Computing . Pacific Grove, CA: Brooks/Cole Pub., 1994. Print.
  3. Cox, S., and Antoine Hernot. Eliciting Harmonics on Strings . ESAIM: COCV 14(2008) 657-677.
  4. Fletcher, Neville H., and Thomas D. Rossing. The Physics of Musical Instruments . New York: Springer-Verlag, 1991. Print.
  5. Knobel, Roger. An Introduction to the Mathematical Theory of Waves . Providence, RI: American Mathematical Society, 2000. Print.
  6. Rayleigh, John William Strutt, and Robert Bruce Lindsay. The Theory of Sound . New York: Dover, 1945. Print.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, The art of the pfug. OpenStax CNX. Jun 05, 2013 Download for free at http://cnx.org/content/col10523/1.34
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'The art of the pfug' conversation and receive update notifications?

Ask