<< Chapter < Page Chapter >> Page >

For example, if we consider a rope that can move in a pipe such that it can have

  • both ends free to move (Case 1)
  • one end free and one end fixed (Case 2)
  • both ends fixed (Case 3).

Each of these cases is slightly different because the free or fixed end determines whether a node or anti-node will form when a standingwave is created in the rope. These are the main restrictions when we determine the wavelengths of potential standing waves. These restrictions are known as boundary conditions and must be met.

In the diagram below you can see the three different cases. It is possible to create standing waves with different frequencies andwavelengths as long as the end criteria are met.

The longer the wavelength the less the number of anti-nodes in the standing waves. We cannot have a standing wave with no anti-nodes becausethen there would be no oscillations. We use n to number the anti-nodes. If all of the tubes have a length L and we know the end constraints we can find the wavelength, λ , for a specific number of anti-nodes.

One node

Let's work out the longest wavelength we can have in each tube, i.e. the case for n = 1 .

Case 1 : In the first tube, both ends must be anti-nodes, so we must place onenode in the middle of the tube. We know the distance from one anti-node to another is 1 2 λ and we also know this distance is L. So we can equate the two and solve for the wavelength:

1 2 λ = L λ = 2 L

Case 2 : In the second tube, one end must be a node and the other must be ananti-node. Since we are looking at the case with one node, we are forced to have it at the end. We know the distance from onenode to another is 1 2 λ but we only have half this distance contained in the tube. So :

1 2 1 2 λ = L λ = 4 L

Case 3 : Here both ends are closed and so we must have two nodes so it isimpossible to construct a case with only one node.

Two nodes

Next we determine which wavelengths could be formed if we had two nodes. Remember that we are dividing the tubeup into smaller and smaller segments by having more nodes so we expect the wavelengths toget shorter.

Case 1 : Both ends are open and so they must be anti-nodes. We can have twonodes inside the tube only if we have one anti-node contained inside the tube and one on each end. This means we have 3 anti-nodes in thetube. The distance between any two anti-nodes is half a wavelength. This means there is half wavelength between the left sideand the middle and another half wavelength between the middle and the right side so there must be one wavelength inside the tube. The safestthing to do is work out how many half wavelengths there are and equate this to the length of the tube L and then solve for λ .

2 ( 1 2 λ ) = L λ = L

Case 2 : We want to have two nodes inside the tube. The left end must be anode and the right end must be an anti-node. We can have one node inside the tube as drawn above. Again we can count the number ofdistances between adjacent nodes or anti-nodes. If we start from the left end we have one half wavelength between the end and the nodeinside the tube. The distance from the node inside the tube to the right end which is an anti-node is half of the distance to anothernode. So it is half of half a wavelength. Together these add up to the length of the tube:

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 physical science. OpenStax CNX. Aug 29, 2011 Download for free at http://cnx.org/content/col11245/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 physical science' conversation and receive update notifications?

Ask