<< Chapter < Page Chapter >> Page >

Wiskunde

Graad 5

Gewone breuke en desimale breuke

Module 35

Om gewone breuke te herken en te klassifiseer

Aktiwiteit 1:

Om gewone breuke te herken en te klassifiseer ten einde hulle te vergelyk [lu 1.3.2]

VERWANTSKAPSTEKENS (<;>; =)

1. Vergelyk die volgende breuke en vul dan<;>of = in:

1.1 3 5 size 12{ { { size 8{3} } over { size 8{5} } } } {} 7 10 size 12{ { { size 8{7} } over { size 8{"10"} } } } {}

1.2 1 3 size 12{ { { size 8{1} } over { size 8{3} } } } {} 1 4 size 12{ { { size 8{1} } over { size 8{4} } } } {}

1.3 5 8 size 12{ { { size 8{5} } over { size 8{8} } } } {} 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}

1.4 1 7 size 12{ { { size 8{1} } over { size 8{7} } } } {} 1 5 size 12{ { { size 8{1} } over { size 8{5} } } } {}

1.5 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {} 6 8 size 12{ { { size 8{6} } over { size 8{8} } } } {}

1.6 3 8 size 12{ { { size 8{3} } over { size 8{8} } } } {} 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}

1.7 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {} 9 12 size 12{ { { size 8{9} } over { size 8{"12"} } } } {}

1.8 3 5 size 12{ { { size 8{3} } over { size 8{5} } } } {} 7 10 size 12{ { { size 8{7} } over { size 8{"10"} } } } {}

1.9 2 11 size 12{ { { size 8{2} } over { size 8{"11"} } } } {} 1 12 size 12{ { { size 8{1} } over { size 8{"12"} } } } {}

1.10 12 12 size 12{ { { size 8{"12"} } over { size 8{"12"} } } } {} 9 9 size 12{ { { size 8{9} } over { size 8{9} } } } {}

2. Vergelyk weer die volgende breuke en omkring dan die grootste een in elk van die volgende:

2.1 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} ; 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {}

2.2 2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {} ; 3 6 size 12{ { { size 8{3} } over { size 8{6} } } } {}

2.3 3 5 size 12{ { { size 8{3} } over { size 8{5} } } } {} ; 9 10 size 12{ { { size 8{9} } over { size 8{"10"} } } } {}

2.4 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} ; 2 6 size 12{ { { size 8{2} } over { size 8{6} } } } {}

2.5 3 8 size 12{ { { size 8{3} } over { size 8{8} } } } {} ; 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}

2.6 4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {} ; 4 10 size 12{ { { size 8{4} } over { size 8{"10"} } } } {}

Klasbespreking

HOE kan ons bogenoemde Wiskundig bepaal as ons nie ’n diagram het om na te kyk nie?

3. In die volgende aktiwiteit sal jy sien hoe belangrik jou kennis van ekwivalente breuke is, want as jy dit onder die knie het, is dit sommer kinderspeletjies om die breuke met mekaar te vergelyk.

Gebruik die reël soos julle dit in jul klasbespreking bepaal het, en vul<;>of = in:

3.1 3 5 size 12{ { { size 8{3} } over { size 8{5} } } } {} 7 15 size 12{ { { size 8{7} } over { size 8{"15"} } } } {}

3.2 7 11 size 12{ { { size 8{7} } over { size 8{"11"} } } } {} 13 22 size 12{ { { size 8{"13"} } over { size 8{"22"} } } } {}

3.3 5 9 size 12{ { { size 8{5} } over { size 8{9} } } } {} 15 27 size 12{ { { size 8{"15"} } over { size 8{"27"} } } } {}

3.4 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {} 20 24 size 12{ { { size 8{"20"} } over { size 8{"24"} } } } {}

4. Gebruik nou jul kennis en vul in:<;>of = :

4.1 4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {} 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {}

4.2 2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {} 4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {}

4.3 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {} 7 9 size 12{ { { size 8{7} } over { size 8{9} } } } {}

4.4 7 8 size 12{ { { size 8{7} } over { size 8{8} } } } {} 6 7 size 12{ { { size 8{6} } over { size 8{7} } } } {}

Aktiwiteit 2:

Om te bereken deur seleksie en gebruik van bewerkings [lu 1.8.3]

1. Verdeel in groepe van drie. Kyk of julle die volgende probleme kan oplos.

1.1 Gizelle en haar tweelingbroer, Donovan, kry elke maand sakgeld. Gizelle spaar twee sesdes van haar sakgeld. Donovan spaar vier negendes van syne. Wie spaar die meeste as hul ewe veel sakgeld kry?

1.2 Ma bak graag pannekoeke. Sy gee ‘n driekwart aan Jake en sy vriende om te eet. Hierna bak Ma dieselfde hoeveelheid pannekoeke. Sy stuur vier vyfdes daarvan skool toe vir Dimitri en sy maats om te geniet. Wie het die meeste pannekoeke by Ma gekry?

1.3 Vusi en Sipho skryf dieselfde toets. Vusi het vier sewendes van die vrae reg beantwoord. Sipho het vyf agstes korrek. Wie het die beste in die toets gevaar?

1.4 Twee taxi’s vervoer passasiers tussen Johannesburg en Pretoria. Die een taxi is twee derdes vol, terwyl die ander een driekwart vol is. Watter taxi vervoer die meeste passasiers?

2. Elke groep kry nou die geleentheid om hul oplossings vir die probleme met die res van die klas te deel.

3. Hou ‘n klasgesprek oor die beste metode om dié soort probleem op te los.

Nog ’n KOPKRAPPER!

Rangskik die volgende breuke van groot na klein:

2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {} ; 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} ; 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {} ; 7 9 size 12{ { { size 8{7} } over { size 8{9} } } } {}

VEREENVOUDIGING

Het jy geweet?

Om ’n breuk in sy eenvoudigste vorm te skryf, deel ons die teller en die noemer deur dieselfde getal. Die waarde van die breuk verander nie, want ons deel eintlik die breuk deur 1.

Bv. 18 24 size 12{ { {"18"} over {"24"} } } {}
6
6
= 3 4 size 12{ { {3} over {4} } } {} en 10 15 size 12{ { {"10"} over {"15"} } } {}
5
5
= 2 3 size 12{ { {2} over {3} } } {}

Aktiwiteit 3:

Om gewone breuke te vereenvoudig [lu 1.3.2]

1. Noudat jy weet hoe om ‘n breuk te vereenvoudig, kyk of jy die volgende tabel kan voltooi:

Breuk deur Vereenvoudig
Bv. 18 27 size 12{ { { size 8{"18"} } over { size 8{"27"} } } } {} 9 9 size 12{ { { size 8{9} } over { size 8{9} } } } {} 2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {}
1.1 40 45 size 12{ { { size 8{"40"} } over { size 8{"45"} } } } {} .................. ..................
1.2 15 25 size 12{ { { size 8{"15"} } over { size 8{"25"} } } } {} .................. ..................
1.3 12 16 size 12{ { { size 8{"12"} } over { size 8{"16"} } } } {} .................. ..................
1.4 24 30 size 12{ { { size 8{"24"} } over { size 8{"30"} } } } {} .................. ..................
1.5 48 54 size 12{ { { size 8{"48"} } over { size 8{"54"} } } } {} .................. ..................

Aktiwiteit 4:

Om ‘n reeks tegnieke te gebruik om berekeninge te doen [lu 1.10.3]

1. Kom ons rond nou gemengde getalle af tot die naaste heelgetal. Verbind die getal in kolom A met die korrekte antwoord in kolom B.

Questions & Answers

explain and give four Example hyperbolic function
Lukman Reply
The denominator of a certain fraction is 9 more than the numerator. If 6 is added to both terms of the fraction, the value of the fraction becomes 2/3. Find the original fraction. 2. The sum of the least and greatest of 3 consecutive integers is 60. What are the valu
SABAL Reply
1. x + 6 2 -------------- = _ x + 9 + 6 3 x + 6 3 ----------- x -- (cross multiply) x + 15 2 3(x + 6) = 2(x + 15) 3x + 18 = 2x + 30 (-2x from both) x + 18 = 30 (-18 from both) x = 12 Test: 12 + 6 18 2 -------------- = --- = --- 12 + 9 + 6 27 3
Pawel
2. (x) + (x + 2) = 60 2x + 2 = 60 2x = 58 x = 29 29, 30, & 31
Pawel
Mark and Don are planning to sell each of their marble collections at a garage sale. If Don has 1 more than 3 times the number of marbles Mark has, how many does each boy have to sell if the total number of marbles is 113?
mariel Reply
Mark = x,. Don = 3x + 1 x + 3x + 1 = 113 4x = 112, x = 28 Mark = 28, Don = 85, 28 + 85 = 113
Pawel
how do I set up the problem?
Harshika Reply
what is a solution set?
Harshika
find the subring of gaussian integers?
Rofiqul
hello, I am happy to help!
Shirley Reply
please can go further on polynomials quadratic
Abdullahi
hi mam
Mark
I need quadratic equation link to Alpa Beta
Abdullahi Reply
find the value of 2x=32
Felix Reply
divide by 2 on each side of the equal sign to solve for x
corri
X=16
Michael
Want to review on complex number 1.What are complex number 2.How to solve complex number problems.
Beyan
yes i wantt to review
Mark
use the y -intercept and slope to sketch the graph of the equation y=6x
Only Reply
how do we prove the quadratic formular
Seidu Reply
please help me prove quadratic formula
Darius
hello, if you have a question about Algebra 2. I may be able to help. I am an Algebra 2 Teacher
Shirley Reply
thank you help me with how to prove the quadratic equation
Seidu
may God blessed u for that. Please I want u to help me in sets.
Opoku
what is math number
Tric Reply
4
Trista
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
Sidiki Reply
can you teacch how to solve that🙏
Mark
Solve for the first variable in one of the equations, then substitute the result into the other equation. Point For: (6111,4111,−411)(6111,4111,-411) Equation Form: x=6111,y=4111,z=−411x=6111,y=4111,z=-411
Brenna
(61/11,41/11,−4/11)
Brenna
x=61/11 y=41/11 z=−4/11 x=61/11 y=41/11 z=-4/11
Brenna
Need help solving this problem (2/7)^-2
Simone Reply
x+2y-z=7
Sidiki
what is the coefficient of -4×
Mehri Reply
-1
Shedrak
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
Alfred Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 5. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10993/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 5' conversation and receive update notifications?

Ask