<< Chapter < Page Chapter >> Page >

Deforestation in the Amazon (2010)
Deforestation in the Amazon (2010) Satellite image shows the extent of deforestation in the Amazon as of 2010. Source: NASA Earth Observatory

Outside of human influence, planetary albedo can also be changed by major volcanic eruptions. When volcanoes erupt, they spew enormous amounts of soot, ash, dust, sulfur, and other aerosols into the atmosphere. During major eruptions, like that of Mt. Pinatubo in 1991, some particles of this debris find their way into the stratosphere, where they reside for a few years. (see Figure Mt. Pinatubo Erupting in 1991 ) The presence of these particles high in the earth’s atmosphere acts like a shield that prevents sunlight from penetrating through the lower atmosphere to warm the earth’s surface. Instead, the energy is either absorbed by the particles or reflected and scattered away. The net effect is that large volcanic eruptions can cool the planet for a few years by changing the earth’s albedo.

Mt. Pinatubo Erupting in 1991
Mt. Pinatubo Erupting in 1991 Photograph of Mt. Pinatubo erupting in the Philippines in 1991. Source: USGS/Cascades Volcano Observatory

Observations of solar output and volcanic eruptions

At first glance the Figure Radiative Forcings&Simulated Temperatures looks quite complicated, but let’s break this graph down to understand how changes in the sun’s output and volcanic eruptions have contributed to recent climate change. In the top panel (a), changes in the amount of energy, measured in W/m 2 , are graphed against time to show how volcanic eruptions have impacted the amount of energy the earth receives from the sun. Notice that around the year 1815, when Mt. Tambora erupted, there is a large downward spike in the plot. Now, examine the bottom panel, which shows the NH temperatures, just as Figure Northern Hemisphere Surface Air displayed, and see how the temperatures in the years following 1815 took a sharp downward turn. This is a direct consequence of the changes in albedo caused by large volcanic eruptions. Next, look at the time period between 1000 and 1300 A.D., the so-called Medieval Warm Period. In panel (b), changes in solar output are graphed against time; notice that during the Medieval Warm Period, the amount of insolation was high compared to the average. The opposite occurred during the Little Ice Age which peaked around 400 years ago.

Radiative Forcings and Simulated Temperatures During the Last 1.1 kyr
Radiative Forcings&Simulated Temperatures Plot (a) - Radiative forcing due to volcanic eruptions over the last 1,300 years. Plot (b) - Radiative forcing due to fluctuations in solar irradiance over the last 1,300 years. Plot (c) - Radiative forcing due to all other forcing over the last 1,300 years. Plot (d) – Northern Hemisphere temperature reconstruction with overlap (shading) over the last 1,300 years. Source: Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press

Alterations to the natural greenhouse effect

We have ruled out the first two mechanisms (i.e., changes in albedo and insolation) as reasons for the recent increase in global temperatures. But when we look at panel (c) in Figure Radiative Forcings&Simulated Temperatures , we notice that the “all other forcing” curves point to a rapid increase in the amount of energy retained by the earth-atmosphere system over the last 200 years. What is responsible for the increasing tail on this graph? Have humans altered the composition of the Earth’s atmosphere to make it more efficient at absorbing the infrared radiation that would have otherwise been lost to space? Is there proof of a human enhancement to the natural greenhouse effect? Can we explain the recent warming on an anthropogenic adjustment to the greenhouse gases like carbon dioxide (CO 2 )? Is an “enhanced greenhouse effect” to blame for the fact that the top ten warmest years since the modern era of instrument measurements have occurred since 1995, as seen in Figure Annual Global Temperature Anomalies .

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Sustainability: a comprehensive foundation. OpenStax CNX. Nov 11, 2013 Download for free at http://legacy.cnx.org/content/col11325/1.43
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?

Ask