<< Chapter < Page Chapter >> Page >
Este módulo presenta dos tipos comunes de convergencia, puntual y norma, discutiremos sus propiedades, diferencias y relaciones entre ellos.

Convergencia de vectores

Discutiremos la convergencia puntual y de la norma de vectores. También existen otros tipos de convergencia y uno en particular, la convergencia uniforme , también puede ser estudiada. Para esta discusión, asumiremos que los vectores pertenecen a un espacio de vector normado .

Convergencia puntual

Una secuencia n 1 g n converge puntualmente al límite g si cada elemento de g n converge al elemento correspondiente en g . A continuación hay unos ejemplos para tratar de ilustrar esta idea.

g n g n 1 g n 2 1 1 n 2 1 n Primero encontramos los siguiente limites para nuestras dos g n 's: n g n 1 1 n g n 2 2 Después tenemos el siguiente, n g n g puntual, donde g 1 2 .

Got questions? Get instant answers now!

t t g n t t n Como se hizo anteriormente, primero examinamos el límite n g n t 0 n t 0 n 0 donde t 0 . Por lo tanto n g n g puntualmente donde g t 0 para toda t .

Got questions? Get instant answers now!

Norma de convergencia

La secuencia n 1 g n converge a g en la norma si n g n g 0 . Aqui ˙ es la norma del espacio vectorial correspondiente de g n 's. Intuitivamente esto significa que la distancia entre los vectores g n y g decrese a 0 .

g n 1 1 n 2 1 n Sea g 1 2

g n g 1 1 n 1 2 2 1 n 1 2 1 n 2 1 n 2 2 n
Asi n g n g 0 , Por lo tanto, g n g en la norma.

Got questions? Get instant answers now!

g n t t n 0 t 1 0 Sea g t 0 para todo t .

g n t g t t 1 0 t 2 n 2 n 0 1 t 3 3 n 2 1 3 n 2
Asi n g n t g t 0 Por lo tanto, g n t g t en la norma.

Got questions? Get instant answers now!

Puntual vs.norma de convergencia

Para m , la convergencia puntual y la norma de convergencia es equivalente.

Puntual ⇒ norma

g n i g i Asumiendo lo anterior, entonces g n g 2 i m 1 g n i g i 2 Así,

n g n g 2 n i m 1 g n i g i 2 i m 1 n g n i g i 2 0

Norma ⇒ puntual

g n g 0

n i m 1 g n i g i 2 i m 1 n g n i g i 2 0
Ya que cada término es mayor o igual a cero, todos los términos' m ' deben ser cero. Así, n g n i g i 2 0 para todo i . Por lo tanto, g n g puntual

En un espacio de dimensión finita el teorema anterior ya no es cierto. Probaremos esto con contraejemplos mostrados a continuación.

Contra ejemplos

Puntual ⇒ norma

Dada la siguiente función: g n t n 0 t 1 n 0 Entonces n g n t 0 Esto significa que, g n t g t pointwise donde para todo t g t 0 .


g n 2 t g n t 2 t 1 n 0 n 2 n
Ya que la norma de la función se eleva, no puede converger a cualquier función con norma finita.

Got questions? Get instant answers now!

Norma ⇒ puntual

Dada la siguiente función: g n t 1 0 t 1 n 0 si n es par g n t -1 0 t 1 n 0 si n es impar Entonces, g n g t 1 n 0 1 1 n 0 donde g t 0 para todo t . Entonces, g n g en la norma Sin embargo, en t 0 , g n t oscila entre -1 y 1, Y por lo tanto es no convergente. Así, g n t no tiene convergencia puntual.

Got questions? Get instant answers now!


Pruebe si las siguientes secuencias tienen convergencia puntual, norma de convergencia, o ambas se mantienen en sus limites.

  • g n t 1 n t 0 t 0 t 0
  • g n t n t t 0 0 t 0

Questions & Answers

how can chip be made from sand
Eke Reply
is this allso about nanoscale material
are nano particles real
Missy Reply
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
where is the latest information on a no technology how can I find it
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
has a lot of application modern world
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, Señales y sistemas. OpenStax CNX. Sep 28, 2006 Download for free at http://cnx.org/content/col10373/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Señales y sistemas' conversation and receive update notifications?