<< Chapter < Page Chapter >> Page >

Weiner deconvolution

How to use the connexions document template

Our system can be described in block diagram form as:


  • f[n] = our original signal
  • h[n] = the room response
  • y[n] = measured recording in the room

Assuming the room is an LTI system, y[n] isrelated to f[n] and h[n]by discrete time convolution:


Convolution is commutative so the following also holds:

h[n] * f[n]= y[n]

Taking the Discrete Time Fourier Transform of f[n], h[n], and y[n]shows that in the frequency domain, the convolution of f[n]and h[n] is equivalent to multiplication oftheir Fourier counterparts:

F(jw) H(jw) = Y(jw)

Given a known original signal and a known measured recording, the room’s frequency response can be determinedby division in the frequency domain:

H(jw) = Y(jw) /F(jw)

Similarly, given a known room response and known measured recording, the original signal can be determined by division in the frequency domain.

F(jw) = Y(jw) /H(jw)

The inverse DTFT can then be used to determine the impulse response h[n]or the recovered signal f[n].

Room noise

The room also contains additive noise (which can be recorded). A more accurate block diagram drawing of oursystem is:

The measured recording, y[n] can be related tothe original signal, room response, and noise in frequency as:

F(jw) H(jw) + N(jw)= Y(jw)

In order to compute the room’s frequency response or the DTFT of the recovered signal, division in thefrequency domain is again performed:

H(jw) = (Y(jw) / F(jw)) – (N(jw)/ F(jw))

F(jw) = (Y(jw) / H(jw)) – (N(jw)/ H(jw))

Many of the fourier coefficients of the room response are small (especially at high frequencies), sodeconvolution has the undesirable effect of greatly amplifying the noise.

Noise reduction

An improvement upon normal deconvolution is to apply a Wiener filter before deconvolution to reduce the additive noise. The Wiener filter utilizes knowledge of thecharacteristics of the additive noise and the signal being recovered to reduce the impact of noise on deconvolution. Thisprocess is known as Wiener deconvolution . The Wiener filter’s mathematical effect on the room’s frequency response can be seenbelow:

Where “x” is the frequency variable, H(x) is the room’s frequency response, G(x) is the wiener-filtered versionof the inverse of the room response and, S(x) is the expected signal strength of the original signal f[n], and N(x) is the expected signal strength of the additive noise.

F(x) =G(x) Y(x)

Where F(x) is the DTFT of the recovered signal and Y(x) is the DTFT of the measured recording.

The following example from image processing shows effectiveness of Wiener deconvolution at reversing a blurringfilter while accounting for noise.

Because of the added S(x) and N(x) terms, Wiener deconvolution cannot be used without knowledge of theoriginal signal and noise. Voice characteristics are fairly predictable, whereas the characteristics of the room are difficultto estimate. Therefore, Wiener deconvolution can only be used when recovering the audio signal (not to determine the roomresponse).

More information on Wiener Deconvolution can be found here .

Questions & Answers

I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
How can I make nanorobot?
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Elec 301 projects fall 2006. OpenStax CNX. Sep 27, 2007 Download for free at http://cnx.org/content/col10462/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elec 301 projects fall 2006' conversation and receive update notifications?