<< Chapter < Page Chapter >> Page >
a ^ m + 1 = [ C T W m + 1 T W m + 1 C ] - 1 C T W m + 1 T W m + 1 A d .

The vector of filter coefficients that is actually used is only partially updated using a form of adjustable step size in the following second orderlinearly weighted sum

a m + 1 = λ a ^ m + 1 + ( 1 - λ ) a m

Using this filter coefficient vector, we solve for the next error vector by going back to [link] and this defines Karlovitz's IRLS algorithm [link] .

In this algorithm, λ is a convergence parameter that takes values 0 < λ 1 . Karlovitz showed that for the proper λ , the IRLS algorithm using [link] always converges to the globally optimal L p approximation for p an even integer in the range 4 p < . At each iteration the L p error has to be minimized over λ which requires a line search. In other words, the full Karlovitz method requires a multi-dimensional weighted least squaresminimization and a one-dimensional p t h power error minimization at each iteration. Extensions of Karlovitz's work [link] show the one-dimensional minimization is not necessary but practice shows thenumber of required iterations increases considerably and robustness in lost.

Fletcher et al. [link] and later Kahng [link] independently derive the same second order iterative algorithm by applying Newton'smethod. That approach gives a formula for λ as a function of p and is discussed later in this paper. Although the iteration count for convergence of the Karlovitz method is good, indeed, perhaps the best ofall, the minimization of λ at each iteration causes the algorithm to be very slow in execution.

Newton's methods

Both the new method in section 4.3 and Lawson's method use a second order updating of the weights to obtain convergence of the basic IRLS algorithm.Fletcher et al. [link] and Kahng [link] use a linear summation for the updating similar in form to [link] but apply it to the filter coefficients in the manner of Karlovitz rather thanthe weights as Lawson did. Indeed, using our development of Karlovitz's method, we see that Kahng's method and Fletcher, Grant, andHebden's method are simply a particular choice of λ as a function of p in Karlovitz's method. They derive

λ = 1 p - 1

by using Newton's method to minimize ε in [link] to give for [link]

a m = ( a ^ m + ( p - 2 ) a m - 1 ) / ( p - 1 ) .

This defines Kahng's method which he says always converges [link] . He also notes that the summation methods in the sections Calculation of the Fourier Transform and Fourier Series using the FFT, Sampling Functions-- the Shah Function, and Down-Sampling, Subsampling, or Decimation do not have the possible restarting problem that Lawson's method theoretically does. Because Kahng's algorithm is a form ofNewton's method, its asymptotic convergence is very good but the initial convergence is poor and very sensitive to starting values.

A new robust irls method

A modification and generalization of an acceleration method suggested independently by Ekblom [link] and by Kahng [link] is developed here and combined with the Newton's method of Fletcher, Grant,and Hebden and of Kahng to give a robust, fast, and accurate IRLS algorithm [link] , [link] . It overcomes the poor initial performance of the Newton's methods and the poor final performance of the RUL algorithms.

Rather than starting the iterations of the IRLS algorithms with the actual desired value of p , after the initial L 2 approximation, the new algorithm starts with p = K * 2 where K is a parameter between one and approximately two, chosen for the particular problem specifications.After the first iteration, the value of p is increased to p = K 2 * 2 . It is increased by a factor of K at each iteration until it reaches the actual desired value. This keeps the value of p being approximated just ahead of the value achieved. This is similar to a homotopy where we varythe value of p from 2 to its final value. A small value of K gives very reliable convergence because the approximation is achieved at eachiteration but requires a large number of iterations for p to reach its final value. A large value of K gives faster convergence for most filter specifications but fails for some. The rule that is used to choose p m at the m t h iteration is

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Digital signal processing and digital filter design (draft). OpenStax CNX. Nov 17, 2012 Download for free at http://cnx.org/content/col10598/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Digital signal processing and digital filter design (draft)' conversation and receive update notifications?