<< Chapter < Page Chapter >> Page >


Meetkunde (Grieks: geo = aarde, metria = meet) het ontstaan as die veld van kennis wat ruimtelike verhoudings hanteer. Dit was een van die twee velde van pre-moderne wiskunde. Die ander veld was die studie van getalle. In die moderne tyd het meetkundige begrippe baie kompleks en abstrak geraak en is dit skaars herkenbaar as ʼn uitvloeisel van vroeë meetkunde.

Werk in pare of groepe en bestudeer die geskiedenis van die onstaan van meetkunde. Beskryf die verskillende stadiums van ontwikkeling en hoe meetkunde later gebruik is deur mense om hul lewens te verbeter. Die lys van stadiums moet dien as ʼn riglyn en hoef slegs die minimum vereistes te beskryf.

  1. Antieke Indiese meetkunde (ong. 3000 - 500 V.C.)
    1. Harappanse meetkunde
    2. Vediese meetkunde
  2. Klassieke Griekse meetkunde (ong. 600 - 300 V.C.)
    1. Thales en Pythagoras
    2. Plato
  3. Hellenistiese meetkunde (ong. 300 V.C - 500 N.C )
    1. Euclides
    2. Archimedes


In hierdie afdeling sal ons kyk na die eienskappe van sekere spesiale vierhoeke. Ons sal dan hierdie eienskappe gebruik om meetkundige probleme op te los. Dit is belangrik om daarop te let dat alhoewel al die eienskappe van ʼn figuur gegee word, benodig ons net sekere unieke eienskappe van die vierhoek om te bewys dat dit wel daardie spesifieke vierhoek is. Byvoorbeeld, as ons ʼn vierhoek het met twee pare parallellesye, dan is daardie vierhoek ʼn parallelogram. Ons kan dan die ander eienskappe van die vierhoek aflei deur ons kennis van parallellelyne en driehoeke te gebruik.


ʼn Trapesium is ʼn vierhoek waarvan ten minste een paar teenoorgestelde sye parallel loop. Dit word soms ook ʼn trapesoïed genoem. ʼn Spesiale tipe trapesium is die gelykbenige trapesium , waar een paar teenoorstaande sye parallel is en die ander paar ewe lank is. Die hoeke aan die eindpunte van elke parallelle sy is ewe groot. ʼn Gelykbenige trapesium het een lyn van simmetrie en sy hoeklyne is ewe lank.

Voorbeelde van trapesiums


ʼn Trapesium met beide pare teenoorstaande sye parallel, word ʼn parallelogram genoem. ʼn Opsomming van die eienskappe van ʼn parallelogram is:

  • Beide pare teenoorstaande sye is parallel.
  • Beide pare teenoorstaande sye is ewe lank.
  • Beide pare teenoorstaande hoeke is ewe groot.
  • Beide hoeklyne/diagonale halveer mekaar (d.w.s. hulle sny mekaar in die helfte)
ʼn Voorbeeld van ʼn parallelogram


ʼn Reghoek is ʼn parallelogram met al vier hoeke ewe groot en gelyk aan 90 . ʼn Opsomming van die eienskappe van ʼn reghoek is:

  • Beide pare teenoorstaande sye is parallel.
  • Beide pare teenoorstaande sye is ewe lank.
  • Die hoeklyne halveer mekaar.
  • Die hoeklyne is ewe lank.
  • Alle hoekpunte is regte hoeke.
Voorbeeld van ʼn reghoek

Rombus / ruit

ʼn Rombus (ruit) is ʼn parallelogram waarvan al vier sye ewe lank is. ʼn Opsomming van die eienskappe van ʼn rombus is:

  • Beide pare teenoorstaande sye is parallel.
  • Al vier sye is ewe lank.
  • Beide pare teenoorstaande hoeke is ewe groot.
  • Die diagonale halveer mekaar met hoeke van 90 .
  • Diagonale halveer die teenoorstaande hoeke.
ʼn Voorbeeld van ʼn ruit, ʼn parallelogram met al vier sye ewe lank

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Siyavula textbooks: wiskunde (graad 10) [caps]. OpenStax CNX. Aug 04, 2011 Download for free at http://cnx.org/content/col11328/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: wiskunde (graad 10) [caps]' conversation and receive update notifications?