# 4.1 Properties of the laplace transform

 Page 1 / 2
Derives basic properties of the Laplace transform.

## Properties of the laplace transform

The properties associated with the Laplace transform are similar to those of the Fourier transform. First, let's set define some notation, we will use the notation $\mathfrak{L}\left\{\right\}$ to denote the Laplace transform operation. Therefore we can write $X\left(s\right)=\mathfrak{L}\left\{x,\left(,t,\right)\right\}$ and $x\left(t\right)={\mathfrak{L}}^{-1}\left\{X,\left(,s,\right)\right\}$ for the forward and inverse Laplace transforms, respectively. We can also use the transform pair notation used earlier:

$x\left(t\right)↔X\left(s\right)$

With this notation defined, lets now look at some properties.

## Linearity

Given that ${x}_{1}\left(t\right)↔{X}_{1}\left(s\right)$ and ${x}_{2}\left(t\right)↔{X}_{2}\left(s\right)$ then for any constants $\alpha$ and $\beta$ , we have

$\alpha {x}_{1}\left(t\right)+\beta {x}_{2}\left(t\right)↔\alpha {X}_{1}\left(s\right)+\beta {X}_{2}\left(s\right)$

The linearity property follows easily using the definition of the Laplace transform.

## Time delay

The reason we call this the time delay property rather than the time shift property is that the time shift must be positive, i.e. if $\tau >0$ , then $x\left(t-\tau \right)$ corresponds to a delay. If $\tau <0$ then we would not be able to use the single-sided Laplace transform because we would have a lower integration limit of $\tau$ , which is less than zero. To derive the property, lets evaluate the Laplace transform of the time-delayed signal

$\mathfrak{L}\left\{x,\left(,t,-,\tau ,\right)\right\}={\int }_{0}^{\infty }x\left(t-\tau \right){e}^{-st}dt$

Letting $\gamma =t-\tau$ leads to $t=\gamma +\tau$ and $dt=d\gamma$ . Substituting these quantities into [link] gives

$\begin{array}{ccc}\hfill \mathfrak{L}\left\{x,\left(,t,-,\tau ,\right)\right\}& =& {\int }_{-\tau }^{\infty }x\left(\gamma \right){e}^{-s\left(\gamma +\tau \right)}d\gamma \hfill \\ & =& {e}^{-s\tau }{\int }_{-\tau }^{\infty }x\left(\gamma \right){e}^{-s\gamma }d\gamma \hfill \\ & =& {e}^{-s\tau }{\int }_{-\tau }^{0}x\left(\gamma \right){e}^{-s\gamma }d\gamma +{e}^{-s\tau }{\int }_{0}^{\infty }x\left(\gamma \right){e}^{-s\gamma }d\gamma \hfill \end{array}$

where we note that the first integral in the last line is zero since $x\left(t\right)=0,t<0$ . Therefore the time delay property is given by

$\mathfrak{L}\left\{x,\left(,t,-,\tau ,\right)\right\}={e}^{-s\tau }X\left(s\right)$

## S-shift

This property is the Laplace transform corresponds to the frequency shift property of the Fourier transform. In fact, the derivation of the $s$ -shift property is virtually identical to that of the frequency shift property.

$\begin{array}{ccc}\hfill \mathfrak{L}\left\{{e}^{-at},x,\left(t\right)\right\}& =& {\int }_{0}^{\infty }{e}^{-at}x\left(t\right){e}^{-st}dt\hfill \\ & =& {\int }_{0}^{\infty }x\left(t\right){e}^{-\left(a+s\right)t}dt\hfill \\ & =& {\int }_{0}^{\infty }x\left(t\right){e}^{-\left(a+\sigma +j\Omega \right)t}dt\hfill \\ & =& X\left(s+a\right)\hfill \end{array}$

The $s$ -shift property also alters the region of convergence of the Laplace transform. If the region of convergence for $X\left(s\right)$ is $\sigma >{\sigma }_{min}$ , then the region of convergence for $\mathfrak{L}\left\{{e}^{-at},x,\left(t\right)\right\}$ is $\sigma >{\sigma }_{min}-\text{Re}\left(a\right)$ .

## Multiplication by $t$

Let's begin by taking the derivative of the Laplace transform:

$\begin{array}{ccc}\hfill \frac{dX\left(s\right)}{ds}& =& \frac{d}{ds}{\int }_{0}^{\infty }x\left(t\right){e}^{-st}dt\hfill \\ \hfill & =& {\int }_{0}^{\infty }x\left(t\right)\frac{d}{ds}{e}^{-st}dt\hfill \\ \hfill & =& -{\int }_{0}^{\infty }tx\left(t\right){e}^{-st}dt\hfill \end{array}$

So we can write

$\mathfrak{L}\left\{t,x,\left(,t,\right)\right\}=-\frac{dX\left(s\right)}{ds}$

This idea can be extended to multiplication by ${t}^{n}$ . Letting $y\left(t\right)=tx\left(t\right)$ , if follows that

$\begin{array}{ccc}\hfill ty\left(t\right)& ↔& -\frac{dY\left(s\right)}{ds}\hfill \\ \hfill & ↔& \frac{{d}^{2}X\left(s\right)}{d{s}^{2}}\hfill \end{array}$

Proceeding in this manner, we find that

${t}^{n}x\left(t\right)↔{\left(-1\right)}^{n}\frac{{d}^{n}X\left(s\right)}{d{s}^{n}}$

## Time scaling

The time scaling property for the Laplace transform is similar to that of the Fourier transform:

$\begin{array}{ccc}\hfill \mathfrak{L}\left\{x,\left(,\alpha ,t,\right)\right\}& =& {\int }_{0}^{\infty }x\left(\alpha t\right){e}^{-st}dt\hfill \\ \hfill & =& \frac{1}{\alpha }{\int }_{0}^{\infty }x\left(\gamma \right){e}^{-\frac{s}{\alpha }\gamma }d\gamma \hfill \\ \hfill & =& \frac{1}{\alpha }X\left(\frac{s}{\alpha }\right)\hfill \end{array}$

where in the second equality, we made the substitution $t=\frac{\gamma }{\alpha }$ and $dt=\frac{d\gamma }{\alpha }$ .

## Convolution

The derivation of the convolution property for the Laplace transform is virtually identical to that of the Fourier transform. We begin with

$\begin{array}{ccc}\hfill \mathfrak{L}\left\{{\int }_{-\infty }^{\infty },x,\left(\tau \right),h,\left(t-\tau \right),d,\tau \right\}& =& {\int }_{-\infty }^{\infty }x\left(\tau \right)\mathfrak{L}\left\{h,\left(,t,-,\tau ,\right)\right\}d\tau \hfill \end{array}$

Applying the time-delay property of the Laplace transform gives

$\begin{array}{ccc}\hfill {\int }_{-\infty }^{\infty }x\left(\tau \right)\mathfrak{L}\left\{h,\left(,t,-,\tau ,\right)\right\}d\tau & =& H\left(s\right){\int }_{-\infty }^{\infty }x\left(\tau \right){e}^{-s\tau }d\tau \hfill \\ & =& H\left(s\right)X\left(s\right)\hfill \end{array}$

If $h\left(t\right)$ is the the impulse response of a linear time-invariant system, then we call $H\left(s\right)$ the system function of the system. The frequency response results by setting $s=j\Omega$ in $H\left(s\right)$ . The system function provides us with a very powerful means of determining the output of a linear time-invariant filter given the input signal. It will also enable us to determine a means of establishing the stability We will discuss stability shortly of a linear-time invariant filter, something which was not possible with the frequency response.

what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!