<< Chapter < Page Chapter >> Page >
This module discusses how to add and subtract fractions with like denominators and how to find the least common denominator to allow addition and subtraction of fractions with unlike denominators.

Adding fractions with like denominators

To add two or more fractions that have the same denominators, add the numerators and place the resulting sum over the common denominator . Reduce, if necessary.

Find the following sums.

3 7 size 12{ { {3} over {7} } } {} + 2 7 size 12{ { {2} over {7} } } {}

The denominators are the same.

Add the numerators and place the sum over the common denominator, 7.

3 7 size 12{ { {3} over {7} } } {} + 2 7 size 12{ { {2} over {7} } } {} = 3 + 2 7 size 12{ { {3+2} over {7} } } {} = 5 7 size 12{ { {5} over {7} } } {}

Got questions? Get instant answers now!

When necessary, reduce the result.

1 8 size 12{ { {1} over {8} } } {} + 3 8 size 12{ { {3} over {8} } } {} = 1 + 3 8 size 12{ { {1+3} over {8} } } {} = 4 8 size 12{ { {4} over {8} } } {} = 1 2 size 12{ { {1} over {2} } } {}

Got questions? Get instant answers now!
We do not add denominators.

To see what happens if we mistakenly add the denominators as well as the numerators, let’s add

1 2 size 12{ { {1} over {2} } } {} and 1 2 size 12{ { {1} over {2} } } {} .

Adding the numerators and mistakenly adding the denominators produces:

1 2 size 12{ { {1} over {2} } } {} + 1 2 size 12{ { {1} over {2} } } {} = 1 + 1 2 + 2 size 12{ { {1+1} over {2+2} } } {} = 2 4 size 12{ { {2} over {4} } } {} = 1 2 size 12{ { {1} over {2} } } {}

This means that 1 2 size 12{ { {1} over {2} } } {} + 1 2 size 12{ { {1} over {2} } } {} is the same as 1 2 size 12{ { {1} over {2} } } {} , which is preposterous! We do not add denominators .

Got questions? Get instant answers now!

Adding fractions with like denominators - exercises

Find the following sums.

3 8 size 12{ { {3} over {8} } } {} + 3 8 size 12{ { {3} over {8} } } {}

6 8 size 12{ { {6} over {8} } } {} = 3 4 size 12{ { {3} over {4} } } {}

Got questions? Get instant answers now!

7 11 size 12{ { {7} over {"11"} } } {} + 4 11 size 12{ { {4} over {"11"} } } {}

11 11 size 12{ { {"11"} over {"11"} } } {} = 1

Got questions? Get instant answers now!

15 20 size 12{ { {"15"} over {"20"} } } {} + 1 20 size 12{ { {1} over {"20"} } } {} + 2 20 size 12{ { {2} over {"20"} } } {}

18 20 size 12{ { {"18"} over {"20"} } } {} = 9 10 size 12{ { {9} over {"10"} } } {}

Got questions? Get instant answers now!

Subtracting fractions with like denominators

To subtract two or more fractions that have the same denominators, subtract the numerators and place the resulting difference over the common denominator . Reduce, if necessary.

Find the following differences.

3 5 size 12{ { {3} over {5} } } {} - 1 5 size 12{ { {1} over {5} } } {}

The denominators are the same.

Subtract the numerators and place the difference over the common denominator, 5.

3 5 size 12{ { {3} over {5} } } {} - 1 5 size 12{ { {1} over {5} } } {} = 3 1 5 size 12{ { {3 - 1} over {5} } } {} = 2 5 size 12{ { {2} over {5} } } {}

Got questions? Get instant answers now!

When necessary, reduce the result.

8 6 size 12{ { {8} over {6} } } {} - 2 6 size 12{ { {2} over {6} } } {} = 6 6 size 12{ { {6} over {6} } } {} = 1

Got questions? Get instant answers now!
We do not subtract denominators.

To see what happens if we mistakenly subtract the denominators as well as the numerators, let’s subtract

7 15 size 12{ { {7} over {"15"} } } {} - 4 15 size 12{ { {4} over {"15"} } } {} .

Subtracting the numerators and mistakenly subtracting the denominators produces:

7 15 size 12{ { {7} over {"15"} } } {} - 4 15 size 12{ { {4} over {"15"} } } {} = 7 4 15 15 size 12{ { {7 - 4} over {"15" - "15"} } } {} = 3 0 size 12{ { {3} over {0} } } {}

We end up dividing by zero, which is undefined. We do not subtract denominators.

Got questions? Get instant answers now!

Subtracting fractions with like denominators - exercises

Find the following differences.

5 12 size 12{ { {5} over {"12"} } } {} - 1 12 size 12{ { {1} over {"12"} } } {}

4 12 size 12{ { {4} over {"12"} } } {} = 1 3 size 12{ { {1} over {3} } } {}

Got questions? Get instant answers now!

3 16 size 12{ { {3} over {"16"} } } {} - 3 16 size 12{ { {3} over {"16"} } } {}

Result is 0

Got questions? Get instant answers now!

16 5 size 12{ { {"16"} over {5} } } {} - 1 5 size 12{ { {1} over {5} } } {} - 2 5 size 12{ { {2} over {5} } } {}

Result is 13 5 size 12{ { {"13"} over {5} } } {}

Got questions? Get instant answers now!

Adding and subtracting fractions with unlike denominators

Basic Rule: Fractions can only be added or subtracted conveniently if they have like denominators.

To see why this rule makes sense, let’s consider the problem of adding a quarter and a dime.

A quarter is 1 4 size 12{ { {1} over {4} } } {} of a dollar.

A dime is 1 10 size 12{ { {1} over {"10"} } } {} of a dollar.

We know that 1 quarter + 1 dime = 35 cents. How do we get to this answer by adding 1 4 size 12{ { {1} over {4} } } {} and 1 10 size 12{ { {1} over {"10"} } } {} ?

We convert them to quantities of the same denomination.

A quarter is equivalent to 25 cents, or 25 100 size 12{ { {"25"} over {"100"} } } {} .

A dime is equivalent to 10 cents, or 10 100 size 12{ { {"10"} over {"100"} } } {} .

By converting them to quantities of the same denomination, we can add them easily:

25 100 size 12{ { {"25"} over {"100"} } } {} + 10 100 size 12{ { {"10"} over {"100"} } } {} = 35 100 size 12{ { {"35"} over {"100"} } } {} .

Same denomination size 12{ rightarrow } {} same denominator

If the denominators are not the same, make them the same by building up the fractions so that they both have a common denominator. A common denominator can always be found by multiplying all the denominators, but it is not necessarily the Least Common Denominator.

Least common denominator (lcd)

The LCD is the smallest number that is evenly divisible by all the denominators.

It is the least common multiple of the denominators.

The LCD is the product of all the prime factors of all the denominators, each factor taken the greatest number of times that it appears in any single denominator.

Finding the lcd

Find the sum of these unlike fractions.

1 12 size 12{ { {1} over {"12"} } } {} + 4 15 size 12{ { {4} over {"15"} } } {}

Factor the denominators:

12 = 2 × 2 × 3

15 = 3 × 5

What is the greatest number of times the prime factor 2 appear in any single denominator? Answer: 2 times. That is the number of times the prime factor 2 will appear as a factor in the LCD.

What is the greatest number of times the prime factor 3 appear in any single denominator? Answer: 1 time. That is the number of times the prime factor 3 will appear as a factor in the LCD.

What is the greatest number of times the prime factor 5 appear in any single denominator? Answer: 1 time. That is the number of times the prime factor 5 will appear as a factor in the LCD.

So we assemble the LCD by multiplying each prime factor by the number of times it appears in a single denominator, or:

2 × 2 × 3 × 5 = 60

60 is the Least Common Denominator (the Least Common Multiple of 12 and 15) .

Got questions? Get instant answers now!

Building up the fractions

To create fractions with like denominators, we now multiply the numerators by whatever factors are missing when we compare the original denominator to the new LCD.

In the fraction 1 12 size 12{ { {1} over {"12"} } } {} , we multiply the denominator 12 by 5 to get the LCD of 60. Therefore we multiply the numerator 1 by the same factor (5).

1 12 size 12{ { {1} over {"12"} } } {} × 5 5 size 12{ { {5} over {5} } } {} = 5 60 size 12{ { {5} over {"60"} } } {}

Similarly,

4 15 size 12{ { {4} over {"15"} } } {} × 4 4 size 12{ { {4} over {4} } } {} = 16 60 size 12{ { {"16"} over {"60"} } } {}

Got questions? Get instant answers now!

Adding the built up fractions

We can now add the two fractions because they have like denominators:

5 60 size 12{ { {5} over {"60"} } } {} + 16 60 size 12{ { {"16"} over {"60"} } } {} = 21 60 size 12{ { {"21"} over {"60"} } } {}

Reduce the result: 21 60 size 12{ { {"21"} over {"60"} } } {} = 7 20 size 12{ { {7} over {"20"} } } {}

Got questions? Get instant answers now!

Adding and subtracting fractions with unlike denominators - exercises

Find the following sums and differences.

1 6 size 12{ { {1} over {6} } } {} + 3 4 size 12{ { {3} over {4} } } {}

Result is 11 12 size 12{ { {"11"} over {"12"} } } {}

Got questions? Get instant answers now!

5 9 size 12{ { {5} over {9} } } {} - 5 12 size 12{ { {5} over {"12"} } } {}

Result is 5 36 size 12{ { {5} over {"36"} } } {}

Got questions? Get instant answers now!

15 16 size 12{ { {"15"} over {"16"} } } {} + 1 2 size 12{ { {1} over {2} } } {} - 3 4 size 12{ { {3} over {4} } } {}

Result is 35 16 size 12{ { {"35"} over {"16"} } } {}

Got questions? Get instant answers now!

Module review exercises

9 15 size 12{ { {9} over {"15"} } } {} + 4 15 size 12{ { {4} over {"15"} } } {}

Result is 13 15 size 12{ { {"13"} over {"15"} } } {}

Got questions? Get instant answers now!

7 10 size 12{ { {7} over {"10"} } } {} - 3 10 size 12{ { {3} over {"10"} } } {} + 11 10 size 12{ { {"11"} over {"10"} } } {}

Result is 15 10 size 12{ { {"15"} over {"10"} } } {} (reduce to 1 1 2 size 12{ { {1} over {2} } } {} )

Got questions? Get instant answers now!

Find the total length of the screw in this diagram:

Total length is 19 32 size 12{ { {"19"} over {"32"} } } {} in.

Got questions? Get instant answers now!

5 2 size 12{ { {5} over {2} } } {} + 16 2 size 12{ { {"16"} over {2} } } {} - 3 2 size 12{ { {3} over {2} } } {}

Result is 18 2 size 12{ { {"18"} over {2} } } {} (reduce to 9)

Got questions? Get instant answers now!

3 4 size 12{ { {3} over {4} } } {} + 1 3 size 12{ { {1} over {3} } } {}

Result is 13 12 size 12{ { {"13"} over {"12"} } } {}

Got questions? Get instant answers now!

Two months ago, a woman paid off 3 24 size 12{ { {3} over {"24"} } } {} of a loan. One month ago, she paid off 4 24 size 12{ { {4} over {"24"} } } {} of the loan. This month she will pay off 5 24 size 12{ { {5} over {"24"} } } {} of the total loan. At the end of this month, how much of her total loan will she have paid off?

She will have paid off 12 24 size 12{ { {"12"} over {"24"} } } {} , or 1 2 size 12{ { {1} over {2} } } {} of the total loan.

Got questions? Get instant answers now!

8 3 size 12{ { {8} over {3} } } {} - 1 4 size 12{ { {1} over {4} } } {} + 7 36 size 12{ { {7} over {"36"} } } {}

Result is 94 36 size 12{ { {"94"} over {"36"} } } {} (reduce to 47 18 size 12{ { {"47"} over {"18"} } } {} )

Got questions? Get instant answers now!

Questions & Answers

Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
hi
Loga
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Basic math textbook for the community college. OpenStax CNX. Jul 04, 2009 Download for free at http://cnx.org/content/col10726/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Basic math textbook for the community college' conversation and receive update notifications?

Ask