<< Chapter < Page Chapter >> Page >
Se nombran algunas de las propiedades de la Transformada de Fourier de Tiempo-Continuo.

En este modulo veremos algunas de las propiedades básicas de la Transformada de Fourier de Tiempo-Continuo (CTFT). La primera sección contiene una tabla que ilustra las propiedades, y la siguiente sección discute unas de las propiedades mas interesantes más a fondo. En la tabl, oprima en el nombre de la operación para ver la explicación se se encuentra más adelante. Véase este modulo para una tabla expandida de las propiedades de Fourier.

Discutiremos estas propiedades para señales aperiodicas de tiempo-continuo pero entenderemos que propiedades similares se matienen para señales de tiempo-continuo y señales periódicas.

Tabla de propiedades de ctft

Nombre de la Operación Señal ( f t ) Transformada ( F ω )
Adición f 1 t f 2 t F 1 ω F 2 ω
Multiplicación Escalar α f t α F t
Simetría F t 2 f ω
Escalamiento en el Tiempo f α t 1 α F ω α
Desplazamiento en el Tiempo f t τ F ω ω τ
Modulación (Desplazamiento de Frecuencias) f t φ t F ω φ
Convolución en el Tiempo f 1 t f 2 t F 1 t F 2 t
Convolución en la Frecuencia f 1 t f 2 t 1 2 F 1 t F 2 t
Diferenciación t n f t ω n F ω

DiscusiÓN de las propiedades de la transformada de fourier

Después de haber visto la tabla anterior y tener un sentimiento de las proiedades de la CTFT, ahora nos tomaremos un poc más de tiempo para discutir de las propiedades más importantes yútiles.

Linealidad

La combinación de las propiedades de la adición y de la multiplicación escalar de la tabla anterior demuestran la propiedad básica de linealidada. Lo que debe de ver es que si uno toma la Transformada de Fourier de una combinación lineal de señales entonces esta serála misma que la combinación lineal de la transformada de Fourier de cada señal individual. Esto es crucial cuando usamos la tabla de las transformadas para encontrar la transformada de una señal más complicada.

Empezaremos con la siguiente señal:

z t α f 1 t α f 2 t
Ahora, después de tomar la transformada de Fourier, mostrada en la siguiente ecuación, notemos que la combinación lineal de los términos no es afectada por la transformada.
Z ω α F 1 ω α F 2 ω

Got questions? Get instant answers now!

SimetrÍA

La simetría es una propiedad que nos puede hacer la vida más fácil resolviendo problemas que involucran la transformada de Fourier. Basicamente ;p que dice esta propiedad es que ya que la función rectangular en el tiempo es una función sinc en la frecuancia, entonces una función sinc en el tiempo seráuna función rectangular en la frecuencia. Este es un resultado directo de las similaridades entre la CTFT y la inversa de la CTFT. Laúnica diferencia es que es escalda por 2 y una revocación de la frecuancia.

Escalamiento en el tiempo

Esta propiedad trata con el efecto de la representación del dominio de frecuancia de una señal si la variable tiempo es alterada. El concepto más importante par entender para la propiedad de escalammiento es que las señales que son estrechas en el tiempo son amplias en la frecuancia y vice versa . El ejemplo más sencillo de esto es la función delta, un pulso unitario con una muy pequeña duración, en el tiempo que se convierte en función constante de longitud-infinita en frecuencia.

La tabla anterior muestra esta idea para una transformación general del dominio-tiempo de la señal. Usted debería de ser capaz de notar que esta ecuación muestra la relación mencionada anteriormente: si la variable tiempo incrementa entonces el rango de la frecuencia sera decreciente.

Desplazamiento en el tiempo

El desplazamiento en el tiempo muestra que un desplazo en el tiempo es equivalente a un desplazo de fase lineal en la frecuencia. Ya que el contenido de la frecuencia depende solamente de la forma de la señal, el cual es invariabe en el desplazo en el tiempo, entonces solamente la fase del espectro seráalterada. Esta propiedad seráprovada facilmente usando la Transformada de Fourier, asi que mostraremos los pasos básicos a continuación:

Primero empezaremos dejando que z t f t τ . Ahora tomemos la transformada de Fourier con la expresión anterior sustituida para z t .

Z ω t f t τ ω t
Ahora hagamos un pequeño cambio de variables, donde σ t τ . A través de la calculación antarior, podemos ver que solamente la variable en el exponencial es alterada solo cambiando la fase en el dominio de la frecuencia.
Z ω τ f σ ω σ τ t ω τ σ f σ ω σ ω τ F ω

Got questions? Get instant answers now!

ModulaciÓ(desplazo de la frecuencia)

La modulación es absolutamente imprescindible para las aplicaciones de comunicaiones. Siendo capaces de desplazar una señal a diferentes frecuencias, nos que mas que tomar ventaja de diferentes partes de los espectros del electromagnetismo es lo que nos permite transmitir la televisión, radio y otroas aplicaciones a través del mismo espacio sin interferencia significativa.

La demostración de la propiedad del desplzamiento de la frecuencia es muy similar a la de desplazamiento en el tiempo ; Sin embargo, aqui usaremos la transformada inversa de Fourier. Ya que vamos a través de los pasos anteriores, la demostración de desplazamiento ene l tiempo, a continuación solo mostrara los pasos iniciales y finales de esta demostración:

z t 1 2 ω F ω φ ω t
Ahora simplemente reducimos esta ecuación por medio de un cambio de variable y simplificando los términos. Después probaremos la propiedad expresada en la tabla anterior:
z t f t φ t

Convolución

Convolución es una de las grandes razones para convertir señales en dominios de frecuancia ya que la convolución en el tiempo se convierte en multiplicación en frecuencia. Esta propiedad es también otro buen ejemplo de la simetria entre el tiempo y la frecuencia. También muestra que hay muy poca ganancia cambiando el dominio de frecuancia cuando la multiplicación en el tiempo esta involucrada.

Introduciremos la integral de convolución, pero si no la ha visto anteriormente o necesita refrescar la memoria véase el modulo de convolución de tiempo-continuo para una explicación mas profunda y su derivación.

y t f 1 t f 2 t τ f 1 τ f 2 t τ

Time diferenciación

Ya que los sistemas LTI pueden ser representados en términos de ecuaciones diferenciales, es evidente que con esta propiedad que conviertiendo al dominio de frecuencia nos permitirá convertir esta complicada ecuación diferencial a una ecuación más sencilla que involucre multiplicación y adición. Esto también es visto con mas detalle durante el estudi de la Transformada de Laplace .

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Señales y sistemas. OpenStax CNX. Sep 28, 2006 Download for free at http://cnx.org/content/col10373/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Señales y sistemas' conversation and receive update notifications?

Ask