<< Chapter < Page Chapter >> Page >
Rombus (ruit) Aantal sye: Lengte van sye:
  • almal is eenders
  • teenoorstaande sye is eenders
  • iets anders (verduidelik)
Aantal hoeke: Grootte van hoeke:
  • almal is eenders
  • teenoorstaande hoeke is eenders
  • iets anders (verduidelik)
Trapesium Aantal sye: Lengte van sye:
  • almal is eenders
  • teenoorstaande sye is eenders
  • iets anders (verduidelik)
Aantal hoeke: Grootte van hoeke:
  • almal is eenders
  • teenoorstaande hoeke is eenders
  • iets anders (verduidelik)
Vlieër Aantal sye: Lengte van sye:
  • almal is eenders
  • teenoorstaande sye is eenders
  • iets anders (verduidelik)
Aantal hoeke: Grootte van hoeke:
  • almal is eenders
  • teenoorstaande hoeke is eenders
  • iets anders (verduidelik)

6.3 Bespreek die volgende met jou maats:

a) Is 'n vierkant 'n spesiale reghoek?

b) Is 'n vierkant 'n parallelogram?

c) Is 'n reghoek 'n parallelogram?

d) Wat is 'n vierhoek?

TOETS JOU VORDERING

1. Skryf die naam van elk van die volgende fatsoene op die stippellyn langs die fatsoen:

1.1
1.2
1.3
1.4

2. Hoeveel sye het 'n driehoek?

3. Verduidelik wat die verskil tussen 'n agthoek en 'n sirkel is.

4. Hoekom word 'n sirkel nie as 'n veelhoek beskou nie?

5. Wat is die geometriese term vir die volgende voorwerpe:

5.1
5.2

5.3 'n gholfbal

6. Hoeveel vlakke (oppervlakke) het 'n suikerblokkie?

7. Noem een woord om die oppervak van 'n sfeer te beskryf.

8. Kies die korrekte woord en onderstreep dit: Die oppervlak van die son is gerond / plat.

9. Hoeveel vlakke het 'n tetrahedron (3-sydige piramide)?

Assessering

Leeruitkomstes(LUs)
LU 3
Ruimte en Vorm (Meetkunde)Die leerder is in staat om eienskappe van en verwantskappe tussen tweedimensionele vorms en driedimensionele voorwerpe in 'n verskeidenheid oriëntasies en posisies te beskryf en voor te stel.
Assesseringstandaarde(ASe)
Dit is duidelik wanneer die leerder:
3.1 tweedimensionele vorms en driedimensionele voorwerpe in die omgewing herken, visualiseer en benoem, insluitend:
  • reghoekige prismas, sfere, silinders en ander voorwerpe;
  • prismas en piramides;
  • sirkels en reghoeke;
  • veelhoeke na aanleiding van die aantal sye tot 8-sydige figure;
3.2 tweedimensionele vorms en driedimensionele voorwerpe uit die omgewing volgens meetkundige eienskappe beskryf, sorteer en vergelyk, insluitend:
  • vorms van vlakke;
  • aantal sye;
  • plat en geboë oppervlakke, reguit en geboë sye;
3.5 tweedimensionele vorms, driedimensionele voorwerpe en patrone van meetkundige voorwerpe en vorms (bv. tangramme) met die klem op teëling (tessellasies) en lynsimmetrie maak.

Memorandum

AKTIWITEIT 1: 3D voorwerpe

1. Bestudeer

2. tekeninge; sfeer; kubus; silinder; keël; kubus-vormige / reghoekige prisma; kubusvorm; piramiede

3.1 en 3.2

Sfeer Silinder Kubus Kubusvorm Piramiede Keël
Lemoen Spaghetti Ysblokkie Boek Doos sjokolade Roomys-horinkie
Alle balle Kers Dobbelsteentjie Baksteen Papierhoed
Harksteel Margarien

4.1 kubusvorm

4.2 silinder

4.3 keël

4.4 keël

4.5 kubusvorm

5. Tabel

Voorwerp Aantal vlakke Plat of geronde vlakke Fatsoen van vlakke
Dosie 6 Plat Reghoek
Bal 1 Gerond Sfeer
Kubus 6 plat Vierkant
Kers 3 Kante: gerond Silindries
Piramiede 3 of 4 plat Kante: driehoekig;Basis: driehoekig of vierkantig

AKTIWITEIT 2: 2D fatsoene

  1. Veelhoeke: eie

2.1 Sirkels: veelhoeke het reguit kante; sirkels is gerond

2.2 Dit het 'n geronde kant.

3.1 tot 3.5 eie

4.1 tot 4.4 eie

5.1 en 5.2

Driehoek Kante Hoeke
3almal eenders 3almal eenders
32 is eenders 32 is eenders
32 is eenders 3 2 is eenders
3geen van hulle is dieselfde 3geen van hulle is dieselfde
3geen van hulle is dieselfde 3 geen van hulle is dieselfde
3geen van hulle is dieselfde 3geen van hulle is dieselfde
  • Eie
  • Eie

6.3 (a) ja

(b) ja

(c) ja

(d) Dit is 'n geslote, plat 4-kantige figuur met reguit kante.

TOETS JOU VORDERING

1.1 seshoek / heksagoon

1.2 reghoek

1.3 driehoek

1.4 aghoek / oktogoon

2. 3

3. 'n Aghoek het reguit kante; 'n sirkel is gerond

4. 'n Sirkel het nie reguit kante nie.

5.1 kubusvormige / reghoekige prisma

5.2 silinder

5.3 sfeer

6. 6

7. gerond

8. gerond

9 . 4 (basis + 3 kante)

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 4. OpenStax CNX. Sep 18, 2009 Download for free at http://cnx.org/content/col11100/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 4' conversation and receive update notifications?

Ask