# 0.7 Dft and fft: an algebraic view  (Page 4/5)

 Page 4 / 5

## Matrix notation

We denote the $N×N$ identity matrix with ${I}_{N}$ , and diagonal matrices with

${diag}_{0\le k

The $N×N$ stride permutation matrix is defined for $N=KM$ by the permutation

${L}_{M}^{N}:\phantom{\rule{4pt}{0ex}}iK+j↦jM+i$

for $0\le i . This definition shows that ${L}_{M}^{N}$ transposes a $K×M$ matrix stored in row-major order. Alternatively, we can write

${L}_{M}^{N}\phantom{\rule{3pt}{0ex}}\text{:}\phantom{\rule{3pt}{0ex}}i\phantom{\rule{3pt}{0ex}}↦\phantom{\rule{3pt}{0ex}}\mathrm{iM}\phantom{\rule{3pt}{0ex}}\text{mod}\phantom{\rule{3pt}{0ex}}N-1,\phantom{\rule{5pt}{0ex}}\text{for}\phantom{\rule{3pt}{0ex}}0\le i

For example ( $·$ means 0),

${L}_{2}^{6}=\left[\begin{array}{cccccc}1& ·& ·& ·& ·& ·\\ ·& ·& 1& ·& ·& ·\\ ·& ·& ·& ·& 1& ·\\ ·& 1& ·& ·& ·& ·\\ ·& ·& ·& 1& ·& ·\\ ·& ·& ·& ·& ·& 1\end{array}\right].$

${L}_{N/2}^{N}$ is sometimes called the perfect shuffle.

Further, we use matrix operators; namely the direct sum

$A\oplus B=\left[\begin{array}{c}A\\ & B\end{array}\right]$

and the Kronecker or tensor product

$A\otimes B={\left[{a}_{k,\ell }B\right]}_{k,\ell },\phantom{\rule{1.em}{0ex}}\text{for}\phantom{\rule{4.pt}{0ex}}A=\left[{a}_{k,\ell }\right].$

In particular,

${I}_{n}\otimes A=A\oplus \cdots \oplus A=\left[\begin{array}{c}A\\ & \ddots \\ & & A\end{array}\right]$

is block-diagonal.

We may also construct a larger matrix as a matrix of matrices, e.g.,

$\left[\begin{array}{cc}A& B\\ B& A\end{array}\right].$

If an algorithm for a transform is given as a product of sparse matrices built from the constructs above, then an algorithm for the transpose orinverse of the transform can be readily derived using mathematical properties including

$\begin{array}{cc}{\left(AB\right)}^{T}={B}^{T}{A}^{T},\hfill & {\left(AB\right)}^{-1}={B}^{-1}{A}^{-1},\hfill \\ {\left(A\oplus B\right)}^{T}={A}^{T}\oplus {B}^{T},\hfill & {\left(A\oplus B\right)}^{-1}={A}^{-1}\oplus {B}^{-1},\hfill \\ {\left(A\otimes B\right)}^{T}={A}^{T}\otimes {B}^{T},\hfill & {\left(A\otimes B\right)}^{-1}={A}^{-1}\otimes {B}^{-1}.\hfill \end{array}$

Permutation matrices are orthogonal, i.e., ${P}^{T}={P}^{-1}$ . The transposition or inversion of diagonal matrices is obvious.

The DFT decomposes $\mathcal{A}=\mathbb{C}\left[s\right]/\left({s}^{N}-1\right)$ with basis $b=\left(1,s,\cdots ,{s}^{N-1}\right)$ as shown in [link] . We assume $N=2M$ . Then

${s}^{2M}-1=\left({s}^{M}-1\right)\left({s}^{M}+1\right)$

factors and we can apply the CRT in the following steps:

$\begin{array}{ccc}& & \mathbb{C}\left[s\right]/\left({s}^{N}-1\right)\hfill \\ & \to & \mathbb{C}\left[s\right]/\left({s}^{M}-1\right)\oplus \mathbb{C}\left[s\right]/\left({s}^{M}+1\right)\hfill \end{array}$
$\begin{array}{ccc}& \to & \underset{0\le i
$\begin{array}{ccc}& \to & \underset{0\le i

As bases in the smaller algebras $\mathbb{C}\left[s\right]/\left({s}^{M}-1\right)$ and $\mathbb{C}\left[s\right]/\left({s}^{M}+1\right)$ , we choose $c=d=\left(1,s,\cdots ,{s}^{M-1}\right)$ . The derivation of an algorithm for ${DFT}_{N}$ based on [link] - [link] is now completely mechanical by reading off the matrix for each of the threedecomposition steps. The product of these matrices is equal to the ${DFT}_{N}$ .

First, we derive the base change matrix $B$ corresponding to [link] . To do so, we have to express the base elements ${s}^{n}\in b$ in the basis $c\cup d$ ; the coordinate vectors are the columns of $B$ . For $0\le n , ${s}^{n}$ is actually contained in $c$ and $d$ , so the first $M$ columns of $B$ are

$B=\left[\begin{array}{cc}{I}_{M}& *\\ {I}_{M}& *\end{array}\right],$

where the entries $*$ are determined next. For the base elements ${s}^{M+n}$ , $0\le n , we have

$\begin{array}{ccc}\hfill {s}^{M+n}& \equiv & {s}^{n}\phantom{\rule{4.pt}{0ex}}\text{mod}\phantom{\rule{4.pt}{0ex}}\left({s}^{M}-1\right),\hfill \\ \hfill {s}^{M+n}& \equiv & -{s}^{n}\phantom{\rule{4.pt}{0ex}}\text{mod}\phantom{\rule{4.pt}{0ex}}\left({s}^{M}+1\right),\hfill \end{array}$

which yields the final result

$B=\left[\begin{array}{cc}{I}_{M}& \phantom{-}{I}_{M}\\ {I}_{M}& -{I}_{M}\end{array}\right]={DFT}_{2}\otimes {I}_{M}.$

Next, we consider step [link] . $\mathbb{C}\left[s\right]/\left({s}^{M}-1\right)$ is decomposed by ${DFT}_{M}$ and $\mathbb{C}\left[s\right]/\left({s}^{M}+1\right)$ by ${DFT\text{-3}}_{M}$ in [link] .

Finally, the permutation in step [link] is the perfect shuffle ${L}_{M}^{N}$ , which interleaves the even and odd spectral components (even and odd exponents of ${W}_{N}$ ).

The final algorithm obtained is

${DFT}_{2M}={L}_{M}^{N}\left({DFT}_{M}\oplus {DFT\text{-3}}_{M}\right)\left({DFT}_{2}\otimes {I}_{M}\right).$

To obtain a better known form, we use ${DFT\text{-3}}_{M}={DFT}_{M}{D}_{M}$ , with ${D}_{M}={diag}_{0\le i , which is evident from [link] . It yields

$\begin{array}{ccc}\hfill {DFT}_{2M}& =& {L}_{M}^{N}\left({DFT}_{M}\oplus {DFT}_{M}{D}_{M}\right)\left({DFT}_{2}\otimes {I}_{M}\right)\hfill \\ & =& {L}_{M}^{N}\left({I}_{2}\otimes {DFT}_{M}\right)\left({I}_{M}\oplus {D}_{M}\right)\left({DFT}_{2}\otimes {I}_{M}\right).\hfill \end{array}$

The last expression is the radix-2 decimation-in-frequency Cooley-Tukey FFT. The corresponding decimation-in-time version isobtained by transposition using [link] and the symmetry of the DFT:

${DFT}_{2M}=\left({DFT}_{2}\otimes {I}_{M}\right)\left({I}_{M}\oplus {D}_{M}\right)\left({I}_{2}\otimes {DFT}_{M}\right){L}_{2}^{N}.$

The entries of the diagonal matrix ${I}_{M}\oplus {D}_{M}$ are commonly called twiddle factors .

The above method for deriving DFT algorithms is used extensively in [link] .

To algebraically derive the general-radix FFT, we use the decomposition property of ${s}^{N}-1$ . Namely, if $N=KM$ then

If potatoes cost Jane $1 per kilogram and she has$5 that could possibly spend on potatoes or other items. If she feels that the first kilogram of potatoes is worth $1.50, the second kilogram is worth$1.14, the third is worth $1.05 and subsequent kilograms are worth$0.30, how many kilograms of potatoes will she purchase? What if she only had $2 to spend? Susan Reply cause of poverty in urban DAVY Reply QI: (A) Asume the following cost data are for a purely competitive producer: At a product price Of$56. will this firm produce in the short run? Why Why not? If it is preferable to produce, what will be the profit-maximizing Or loss-minimizing Output? Explain. What economic profit or loss will the
what is money
what is economic
economics is the study of ways in which people use resources to satisfy their wants
Falak
what is Price mechanism
introduction to economics
welfare definition of economics
Uday
examine the wealth and welfare definitions of economics
Uday
Anand
What do we mean by Asian tigers
Dm me I will tell u
Shailendra
Hi
Aeesha
hi
Pixel
What is Average revenue
KEMZO
How are u doing
KEMZO
it is so fantastic
metasebia
uday
Uday
it is a group of 4 countries named Singapore, South Korea, Taiwan and Hong Kong because their economies are growing very faster
Anand
what's a demand
it is the quantity of commodities that consumers are willing and able to purchase at particular prices and at a given time
Munanag
quantity of commodities dgat consumers are willing to pat at particular price
Omed
demand depends upon 2 things 1wish to buy 2 have purchasing power of that deserving commodity except any from both can't be said demand.
Bashir
Demand is a various quantity of a commodities that a consumer is willing and able to buy at a particular price within a given period of time. All other things been equal.
Vedzi
State the law of demand
Vedzi
The desire to get something is called demand.
Mahabuba
what is the use of something should pay for its opportunity foregone to indicate?
Why in monopoly does the firm maximize profits when its marginal revenue equals marginal cost
different between economic n history
If it is known that the base change of RM45 million, the statutory proposal ratio of 7 per cent, and the public cash holding ratio of 5 per cent, what is the proposed ratio of bank surplus to generate a total deposit of RM 300 million?
In a single bank system, a bank can create a deposit when it receives a new deposit in cash. If a depositor puts a cash deposit of RM10,000 into the bank, assume the statutory reserve requirement is 7% and the bank adopts a surplus reserve of 8%. a. Calculate the amount of deposits made at the end o
Jeslyne
the part of marginal revenue product curve lies in the _ stage of production is called form demand curve for variable input.
The cost associated with the inputs owned by the farmer is termed as
Bashir
the cost associated with inputs owned by the farmer is termed as ____
Bashir
why do we study economic
we study economics to know how to manage our limited resources
Eben
တစ်ဦးကျဝင်​ငွေ
myo
we study economics the know how to use our resources and where to put it
Mamoud
what is end
Nwobodo
we study economics to make rational decision
Gloria
we study economics only to know how to effectively and efficiently allocate our limited resource in other to meet our unlimited wants
Kpegba
We study economics inorder for us to know the difference of the needs and wants and aslo how to use the limited resources that are available
Bongani
Got questions? Join the online conversation and get instant answers!