<< Chapter < Page Chapter >> Page >
Subtractive synthesis techniques often require a wideband excitation source such as a pulse train to drive a time-varying digital filter. Traditional rectangular pulses have theoretically infinite bandwidth, and therefore always introduce aliasing noise into the input signal. A band-limited pulse (BLP) source is free of aliasing problems, and is more suitable for subtractive synthesis algorithms. The mathematics of the band-limited pulse is presented, and a LabVIEW VI is developed to implement the BLP source. An audio demonstration is included.
This module refers to LabVIEW, a software development environment that features a graphical programming language. Please see the LabVIEW QuickStart Guide module for tutorials and documentation that will help you:
•Apply LabVIEW to Audio Signal Processing
•Get started with LabVIEW
•Obtain a fully-functional evaluation edition of LabVIEW


Subtractive synthesis techniques apply a filter (usually time-varying) to a wideband excitation source such as noise or a pulse train. The filtershapes the wideband spectrum into the desired spectrum. The excitation/filter technique describes the sound-producing mechanism of many types of physical instruments as well as the human voice, makingsubtractive synthesis an attractive method for physical modeling of real instruments.

A pulse train , a repetitive series of pulses, provides an excitation source that has a perceptible pitch, so in a sense the excitation spectrum is "pre-shaped" before applying it to a filter.Many types of musical instruments use some sort of pulse train as an excitation, notably wind instruments such as brass (e.g., trumpet, trombone, and tuba) and woodwinds (e.g., clarinet, saxophone, oboe, and bassoon). Likewise, the humanvoice begins as a series of pulses produced by vocal cord vibrations, which can be considered the "excitation signal" to the vocal and nasal tract that acts as a resonant cavity to amplify and filterthe "signal."

Traditional rectangular pulse shapes have significant spectral energy contained in harmonics that extend beyond the folding frequency (half of the sampling frequency). These harmonics are subject to aliasing , and are "folded back" into the principal alias , i.e., the spectrum between 0 and f s / 2 . The aliased harmonics are distinctly audible as high-frequency tones that, since undesired, qualify as noise.

The band-limited pulse , however, is free of aliasing problems because its maximum harmonic can be chosen to be below the folding frequency. In this module the mathematics of the band-limited pulse aredeveloped, and a band-limited pulse generator is implemented in LabVIEW.

Mathematical development of the band-limited pulse

By definition, a band-limited pulse has zero spectral energy beyond some determined frequency. You can use a truncated Fourier series to create a series of harmonics, or sinusoids, as in :

x ( t ) = k = 1 N sin ( 2 π k f 0 t ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacIcacaWG0bGaaiykaiabg2da9maaqahabaGaci4CaiaacMgacaGGUbGaaiikaiaaikdacqaHapaCcaWGRbGaamOzamaaBaaaleaacaaIWaaabeaakiaadshacaGGPaaaleaacaWGRbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaaa@49C4@

The screencast video shows how to implement in LabVIEW by introducing the "Tones and Noise" built-in subVI that is part of the "Signal Processing" palette. The video includes a demonstration that relatesthe time-domain pulse shape, spectral behavior, and audible sound of the band-limited pulse.

Download the finished VI from the video: blp_demo.vi . This VI requires installation of the TripleDisplay front-panel indicator.

[video] Band-limited pulse generator in LabVIEW using "Tones and Noise" built-in subVI

The truncated Fourier series approach works fine for off-line or batch-mode signal processing. However, in a real-time application the computational cost of generating individual sinusoids becomes prohibitive, especially when a fairly dense spectrumis required (for example, 50 sinusoids).

A closed-form version of the truncated Fourier series equation is presented in (refer to Moore in "References" section below):

x ( t ) = k = 1 N sin ( k θ ) = sin [ ( N + 1 ) θ 2 ] sin ( N θ 2 ) sin ( θ 2 ) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacIcacaWG0bGaaiykaiabg2da9maaqahabaGaci4CaiaacMgacaGGUbGaaiikaiaadUgacqaH4oqCcaGGPaGaeyypa0Jaci4CaiaacMgacaGGUbWaamWaaeaacaGGOaGaamOtaiabgUcaRiaaigdacaGGPaWaaSaaaeaacqaH4oqCaeaacaaIYaaaaaGaay5waiaaw2faaaWcbaGaam4Aaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdGcdaWcaaqaaiGacohacaGGPbGaaiOBamaabmaabaGaamOtamaalaaabaGaeqiUdehabaGaaGOmaaaaaiaawIcacaGLPaaaaeaaciGGZbGaaiyAaiaac6gadaqadaqaamaalaaabaGaeqiUdehabaGaaGOmaaaaaiaawIcacaGLPaaaaaaaaa@60FB@


θ = 2 π f 0 t MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8YjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdeNaeyypa0JaaGOmaiabec8aWjaadAgadaWgaaWcbaGaaGimaaqabaGccaWG0baaaa@3D44@ . The closed-form version of the summation requires only three sinusoidal oscillators yet can produce an arbitrary number of sinusoidal components.

Implementing contains one significant challenge, however. Note the ratio of two sinusoids on the far right of the equation. The denominator sinusoid periodically passes through zero, leading to a divide-by-zero error. However, because the numerator sinusoidoperates at a frequency that is N times higher, the numerator sinusoid also approaches zero whenever the lower-frequency denominator sinusoid approaches zero. This "0/0" condition converges to either N or -N; the sign can be inferred by looking at adjacent samples.


  • Moore, F.R., "Elements of Computer Music," Prentice-Hall, 1990, ISBN 0-13-252552-6.

Questions & Answers

How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
How can I make nanorobot?
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
how can I make nanorobot?
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Musical signal processing with labview -- subtractive synthesis. OpenStax CNX. Nov 07, 2007 Download for free at http://cnx.org/content/col10484/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Musical signal processing with labview -- subtractive synthesis' conversation and receive update notifications?