# 2.5 Prime factorization and the least common multiple  (Page 3/8)

 Page 3 / 8

Find the prime factorization using the ladder method: $80$

2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 5, or 2 4 ⋅ 5

Find the prime factorization using the ladder method: $60$

2 ⋅ 2 ⋅ 3 ⋅ 5, or 2 2 ⋅ 3 ⋅ 5

Find the prime factorization of $48$ using the ladder method.

## Solution

 Divide the number by the smallest prime, 2. Continue dividing by 2 until it no longer divides evenly. The quotient, 3, is prime, so the ladder is complete. Write the prime factorization of 48. $2\cdot 2\cdot 2\cdot 2\cdot 3$ ${2}^{4}\cdot 3$

Find the prime factorization using the ladder method. $126$

2 ⋅ 3 ⋅ 3 ⋅ 7, or 2 ⋅ 3 2 ⋅ 7

Find the prime factorization using the ladder method. $294$

2 ⋅ 3 ⋅ 7 ⋅ 7, or 2 ⋅ 3 ⋅ 7 2

## Find the least common multiple (lcm) of two numbers

One of the reasons we look at multiples and primes is to use these techniques to find the least common multiple of two numbers. This will be useful when we add and subtract fractions with different denominators.

## Listing multiples method

A common multiple of two numbers is a number that is a multiple of both numbers. Suppose we want to find common multiples of $10$ and $25.$ We can list the first several multiples of each number. Then we look for multiples that are common to both lists—these are the common multiples.

$\begin{array}{c}10\text{:}10,20,30,40,\phantom{\rule{0.2em}{0ex}}50,60,70,80,90,100,110,\text{…}\hfill \\ 25\text{:}25,\phantom{\rule{0.2em}{0ex}}50,75,\phantom{\rule{0.2em}{0ex}}100,125,\text{…}\hfill \end{array}$

We see that $50$ and $100$ appear in both lists. They are common multiples of $10$ and $25.$ We would find more common multiples if we continued the list of multiples for each.

The smallest number that is a multiple of two numbers is called the least common multiple    (LCM). So the least LCM of $10$ and $25$ is $50.$

## Find the least common multiple (lcm) of two numbers by listing multiples.

1. List the first several multiples of each number.
2. Look for multiples common to both lists. If there are no common multiples in the lists, write out additional multiples for each number.
3. Look for the smallest number that is common to both lists.
4. This number is the LCM.

Find the LCM of $15$ and $20$ by listing multiples.

## Solution

List the first several multiples of $15$ and of $20.$ Identify the first common multiple.

$\begin{array}{l}\text{15:}\phantom{\rule{0.2em}{0ex}}15,30,45,\phantom{\rule{0.2em}{0ex}}60,75,90,105,120\hfill \\ \text{20:}\phantom{\rule{0.2em}{0ex}}20,40,\phantom{\rule{0.2em}{0ex}}60,80,100,120,140,160\hfill \end{array}$

The smallest number to appear on both lists is $60,$ so $60$ is the least common multiple of $15$ and $20.$

Notice that $120$ is on both lists, too. It is a common multiple, but it is not the least common multiple.

Find the least common multiple (LCM) of the given numbers: $9\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}12$

36

Find the least common multiple (LCM) of the given numbers: $18\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}24$

72

## Prime factors method

Another way to find the least common multiple of two numbers is to use their prime factors. We’ll use this method to find the LCM of $12$ and $18.$

We start by finding the prime factorization of each number.

$12=2\cdot 2\cdot 3\phantom{\rule{3em}{0ex}}18=2\cdot 3\cdot 3$

Then we write each number as a product of primes, matching primes vertically when possible.

$\begin{array}{l}12=2\cdot 2\cdot 3\hfill \\ 18=2\cdot \phantom{\rule{1.1em}{0ex}}3\cdot 3\end{array}$

Now we bring down the primes in each column. The LCM is the product of these factors. Notice that the prime factors of $12$ and the prime factors of $18$ are included in the LCM. By matching up the common primes, each common prime factor is used only once. This ensures that $36$ is the least common multiple.

How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
A soccer field is a rectangle 130 meters wide and 110 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance, to the nearest tenths place.
Jeannette has $5 and$10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
What is the expressiin for seven less than four times the number of nickels
How do i figure this problem out.
how do you translate this in Algebraic Expressions
why surface tension is zero at critical temperature
Shanjida
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
s.
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?        By By Mistry Bhavesh 